MMdetection2测试voc数据获取precision

本文介绍了在使用MMdetection进行目标检测时,如何通过修改代码来获取VOC数据集的precision指标。原有评估仅显示recall和mAP,通过详细修改`mean_ap.py`中的`print_map_summary`函数,可以实现precision的计算和展示。
摘要由CSDN通过智能技术生成

在使用mmdetection时,测试voc数据集无法得到精度指标,只有recall和mAP,这里可以通过修改几行代码来获得precision指标

修改后打印结果:

代码修改

修改mmdet/core/evaluation/mean_ap.py文件里的print_map_summary函数的5处代码,你可以直接复制这个函数,然后替换掉原来的函数。修改后的函数为:

def print_map_summary(mean_ap,
                      results,
                      dataset=None,
                      scale_ranges=None,
                      logger=None):
    """Print mAP and results of each class.

    A table will be printed to show the gts/dets/recall/AP of each class and
    the mAP.

    Args:
        mean_ap (float): Calculated from `eval_map()`.
        results (list[dict]): Calculated from `eval_map()`.
        dataset (list[str] | str | None): Dataset name or dataset classes.
        scale_ranges (list[tuple] | None): 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值