分布函数弱收敛和一致收敛

经验分布弱收敛和一致收敛到某一特定分布

定理:
F n ⇒ F F_n \Rightarrow F FnF, 且 F F F 连续,则:
lim ⁡ n → ∞ sup ⁡ t ∣ F n ( t ) − F ( t ) ∣ = 0 \lim\limits_{n \to \infty} \sup_{t} | F_n(t) - F(t)| =0 nlimtsupFn(t)F(t)=0

Proof:
由于 F F F 是某一分布函数,所以必定 ∃ M > 0 \exist M>0 M>0 ,使得对于 ∀ ε > 0 \forall \varepsilon >0 ε>0,有:
{ 1 − F ( M ) < ε F ( − M ) < ε \left\{ \begin{matrix} 1- F(M) < \varepsilon \\ F(-M) < \varepsilon \end{matrix} \right. {1F(M)<εF(M)<ε
对于区间 [ − M , M ] [-M,M] [M,M],一定存在划分 − M = x 0 < x 1 < ⋯ < x J = M -M = x_0 < x_1< \cdots < x_J = M M=x0<x1<<xJ=M,使得:
对于上述的 ε > 0 \varepsilon >0 ε>0 ∃   δ > 0 \exist\ \delta >0  δ>0,当 x i + 1 − x i < δ x_{i+1} -x_i < \delta xi+1xi<δ 时,
F ( x i + 1 ) − F ( x i ) < ε (1) F(x_{i+1}) - F(x_i) < \varepsilon\tag{1} F(xi+1)F(xi)<ε(1).
(这里其实是给出了每个小区间内函数差值上界)

已知 F n ⇒ F F_n \Rightarrow F FnF,那么,对于上述的 ε > 0 \varepsilon >0 ε>0, ∃   N ∈ N \exist \ N \in \mathbb{N}  NN,使得当 n > N n > N n>N时:
∣ F n ( x i ) − F ( x ) ∣ ≤ ε (2) |F_n(x_i) - F(x)| \leq \varepsilon\tag{2} Fn(xi)F(x)ε(2)
(这里给出了每个小区间内 F n F_n Fn F F F的差值上界)

故, ∀ x ∈ [ − M , M ] \forall x \in [-M,M] x[M,M] ∃ i → x ∈ [ x i , x i + 1 ] \exist i \rightarrow x \in [x_i,x_{i+1}] ix[xi,xi+1] ,此时:

∣ F n ( x ) − F ( x ) ∣ ≤ ∣ F n ( x i + 1 ) − F ( x ) ∣ ( 因为 F n 单调不减 ) = ∣ F n ( x i + 1 ) − F ( x i + 1 ) + F ( x i + 1 ) − F ( x ) ∣ ≤ ∣ F n ( x i + 1 ) − F ( x i + 1 ) ∣ + ∣ F ( x i + 1 ) − F ( x ) ∣ ( 三角不等式 ) ≤ 2 ε ( 用上面的 ( 1 ) ( 2 ) ) \begin{aligned} |F_n(x) - F(x)| & \leq |F_n(x_{i+1}) - F(x)|(因为F_n单调不减)\\ & = |F_n(x_{i+1}) - F(x_{i+1})+F(x_{i+1})-F(x)|\\ & \leq |F_n(x_{i+1}) - F(x_{i+1})| + |F(x_{i+1})-F(x)|(三角不等式)\\ & \leq 2\varepsilon(用上面的(1)(2)) \end{aligned} Fn(x)F(x)Fn(xi+1)F(x)(因为Fn单调不减)=Fn(xi+1)F(xi+1)+F(xi+1)F(x)Fn(xi+1)F(xi+1)+F(xi+1)F(x)(三角不等式)2ε(用上面的(1)(2))
由于 ε \varepsilon ε 是任意的,可以任意小,所以有:
lim ⁡ n → ∞ sup ⁡ t ∣ F n ( t ) − F ( t ) ∣ = 0 \lim\limits_{n \to \infty} \sup_{t} | F_n(t) - F(t)| =0 nlimtsupFn(t)F(t)=0
得证。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值