2.不等式的齐次化

不等式的齐次化

齐次化往往伴随着用 舒尔不等式 \color{red}舒尔不等式 舒尔不等式或者 黑而米格不等式 \color{red}黑而米格不等式 黑而米格不等式

舒尔不等式 \color{red}舒尔不等式 舒尔不等式

a , b , c ≥ 0 , r > 0 , ∑ a r ( a − b ) ( a − c ) ≥ 0 a,b,c\ge0,r>0,\sum a^r(a-b)(a-c)\ge0 a,b,c0,r>0,ar(ab)(ac)0

证:由对称性不妨设 a ≥ b ≥ c a\ge b\ge c abc。则 L H S ≥ ( a − b ) ( a r ( a − c ) − b r ( b − c ) ) + c r ( a − c ) ( b − c ) ≥ 0 LHS\ge(a-b)(a^r(a-c)-b^r(b-c))+c^r(a-c)(b-c)\ge0 LHS(ab)(ar(ac)br(bc))+cr(ac)(bc)0。证毕。

米尔黑得不等式 \color{red}米尔黑得不等式 米尔黑得不等式

二元:若 [ a 1 , a 2 ] ≻ [ b 1 , b 2 ] [a_1,a_2]\succ[b_1,b_2] [a1,a2][b1,b2](优超) , a 1 , a 2 , b 1 , b 2 , x , y > 0 ,a_1,a_2,b_1,b_2,x,y>0 ,a1,a2,b1,b2,x,y>0 ∑ s y m x a 1 y a 2 ≥ ∑ s y m x b 1 y b 2 \large\sum\limits_{sym}x^{a_1}y^{a_2}\ge\sum\limits_{sym}x^{b_1}y^{b_2} symxa1ya2symxb1yb2






证: ∑ s y m x a 1 y a 2 − ∑ s y m x b 1 y b 2 = x a 2 y a 2 ( x a 1 − a 2 + y a 1 − a 2 − x b 1 − a 2 y b 2 − a 2 − x b 2 − a 2 y b 1 − a 2 ) \large\sum\limits_{sym}x^{a_1}y^{a_2}-\sum\limits_{sym}x^{b_1}y^{b_2}=x^{a_2}y^{a_2}(x^{a_1-a_2}+y^{a_1-a_2}-x^{b_1-a_2}y^{b_2-a_2}-x^{b_2-a_2}y^{b_1-a_2}) symxa1ya2symxb1yb2=xa2ya2(xa1a2+ya1a2xb1a2yb2a2xb2a2yb1a2)

= x a 2 y a 2 ( x b 1 − a 2 − y b 1 − a 2 ) ( x b 2 − a 2 − y b 2 − a 2 ) \large=x^{a_2}y^{a_2}(x^{b_1-a_2}-y^{b_1-a_2})(x^{b_2-a_2}-y^{b_2-a_2}) =xa2ya2(xb1a2yb1a2)(xb2a2yb2a2)
由对称性不妨设 x ≥ y x\ge y xy,则 x a 2 y a 2 ( x b 1 − a 2 − y b 1 − a 2 ) ( x b 2 − a 2 − y b 2 − a 2 ) ≥ 0 \large x^{a_2}y^{a_2}(x^{b_1-a_2}-y^{b_1-a_2})(x^{b_2-a_2}-y^{b_2-a_2})\ge0 xa2ya2(xb1a2yb1a2)(xb2a2yb2a2)0。证毕。

三元:若 [ a 1 , a 2 , a 3 ] ≻ [ b 1 , b 2 , b 3 ] [a_1,a_2,a_3]\succ[b_1,b_2,b_3] [a1,a2,a3][b1,b2,b3](优超) , a i , b i , x , y > 0 ,a_i,b_i,x,y>0 ,ai,bi,x,y>0 ∑ s y m x a 1 y a 2 z a 3 ≥ ∑ s y m x b 1 y b 2 z b 3 \large\sum\limits_{sym}x^{a_1}y^{a_2}z^{a_3}\ge\sum\limits_{sym}x^{b_1}y^{b_2}z^{b_3} symxa1ya2za3symxb1yb2zb3






b 1 ≥ a 2 \color{red}b_1\ge a_2 b1a2时, L H S = ∑ z a 3 ( x a 1 y a 2 + x a 2 y a 1 ) ≥ ∑ z a 3 ( x a 1 + a 2 − b 1 y b 1 + x b 1 y a 1 + a 2 − b 1 ) = ∑ x b 1 ( y a 1 + a 2 − b 1 z a 3 + y a 3 z a 1 + a 2 − b 1 ) \large LHS=\sum z^{a_3}(x^{a_1}y^{a_2}+x^{a_2}y^{a_1})\ge\sum z^{a_3}(x^{a_1+a_2-b_1}y^{b_1}+x^{b_1}y^{a_1+a_2-b_1})=\sum x^{b_1}(y^{a_1+a_2-b_1}z^{a_3}+y^{a_3}z^{a_1+a_2-b_1}) LHS=za3(xa1ya2+xa2ya1)za3(xa1+a2b1yb1+xb1ya1+a2b1)=xb1(ya1+a2b1za3+ya3za1+a2b1)

≥ ∑ x b 1 ( y b 2 z b 3 + y b 3 z b 2 ) = R H S \large\ge\sum x^{b_1}(y^{b_2}z^{b_3}+y^{b_3}z^{b_2})=RHS xb1(yb2zb3+yb3zb2)=RHS

b 1 < a 2 \color{red}b_1<a_2 b1<a2时, L H S = ∑ x a 1 ( y a 2 z a 3 + y a 3 z a 2 ) ≥ ∑ x a 1 ( y b 1 z a 2 + a 3 − b 1 + y a 2 + a 3 − b 1 z b 1 ) = ∑ y b 1 ( x a 1 z a 2 + a 3 − b 1 + x a 2 + a 3 − b 1 z a 1 ) \large LHS=\sum x^{a_1}(y^{a_2}z^{a_3}+y^{a_3}z^{a_2})\ge\sum x^{a_1}(y^{b_1}z^{a_2+a_3-b_1}+y^{a_2+a_3-b_1}z^{b_1})=\sum y^{b_1}(x^{a_1}z^{a_2+a_3-b_1}+x^{a_2+a_3-b_1}z^{a_1}) LHS=xa1(ya2za3+ya3za2)xa1(yb1za2+a3b1+ya2+a3b1zb1)=yb1(xa1za2+a3b1+xa2+a3b1za1)

≥ ∑ y b 1 ( x b 2 z b 3 + x b 3 z b 2 ) = R H S \large\ge\sum y^{b_1}(x^{b_2}z^{b_3}+x^{b_3}z^{b_2})=RHS yb1(xb2zb3+xb3zb2)=RHS

所以综上,成立。

题目 \color{red}题目 题目

1.若 a , b , c > 0 a,b,c>0 a,b,c>0,证明: ∑ a 3 b c ≥ ∑ a \large\sum\frac{a^3}{bc}\ge \sum a bca3a






证:原命题等价于: ∑ a 4 ≥ ∑ a 2 b c ⇔ ∑ s y m a 4 ≥ ∑ s y m a 2 b c \large\sum a^4\ge \sum a^2bc\Leftrightarrow\large\sum\limits_{sym} a^4\ge \sum\limits_{sym} a^2bc a4a2bcsyma4syma2bc
∵ [ 4 , 0 , 0 ] ≻ [ 2 , 1 , 1 ] \because [4,0,0]\succ[2,1,1] [4,0,0][2,1,1]
∴ 由黑尔米得定理得证。 \therefore 由黑尔米得定理得证。 由黑尔米得定理得证。

2.若正实数 a , b , c a,b,c a,b,c满足 ∑ a = 1 \sum a=1 a=1,求证: ∏ ( a + 1 ) ≥ 8 ∏ ( 1 − a ) \prod\limits(a+1)\ge 8\prod(1-a) (a+1)8(1a)






证: ∏ ( a + 1 ) − 8 ∏ ( 1 − a ) = 9 ∑ a − 7 ∑ a b + 9 a b c − 7 = 2 + 9 a b c − 7 ∑ a b = 2 ( a + b + c ) 3 − 7 ∑ a ∑ a b + 9 a b c \prod\limits(a+1)-8\prod(1-a)=9\sum a-7\sum ab+9abc-7=2+9abc-7\sum ab=2(a+b+c)^3-7\sum a\sum ab+9abc (a+1)8(1a)=9a7ab+9abc7=2+9abc7ab=2(a+b+c)37aab+9abc

= 2 ∑ a 3 + 6 ∑ s y m a 2 b + 12 a b c − 7 ∑ s y m a 2 b − 21 a b c + 9 a b c = 2 ∑ a 3 − ∑ s y m a 2 b = ∑ s y m ( a 3 − a 2 b ) ≥ 0 =2\sum a^3+6\sum\limits_{sym} a^2b+12abc-7\sum\limits_{sym}a^2b-21abc+9abc=2\sum a^3-\sum\limits_{sym}a^2b=\sum\limits_{sym}(a^3-a^2b)\ge 0 =2a3+6syma2b+12abc7syma2b21abc+9abc=2a3syma2b=sym(a3a2b)0

3.若 a , b , c > 1 , ∑ 1 a − 1 = 1 a,b,c>1,\large\sum\frac{1}{a-1}=\small1 a,b,c>1,a11=1。证明: a b c + 44 ≥ 9 ∑ a abc+44\ge 9\sum a abc+449a






引理(舒尔变式): ( ∑ a ) 3 + 9 a b c − 4 ∑ a ∑ a b ≥ 0 (\sum a)^3+9abc-4\sum a\sum ab\ge0 (a)3+9abc4aab0

证:展开整理得 ∑ a 3 − ∑ s y m a 2 b + 3 a b c ≥ 0 ⇔ 1 2 ∑ s y m ( a 3 − a 2 b − a 2 c + a b c ) ≥ 0 ⇔ ∑ s y m a ( a − b ) ( a − c ) ≥ 0 \sum a^3-\sum\limits_{sym} a^2b+3abc\ge0\Leftrightarrow \frac{1}{2}\sum\limits_{sym}(a^3-a^2b-a^2c+abc)\ge0\Leftrightarrow\sum\limits_{sym}a(a-b)(a-c)\ge0 a3syma2b+3abc021sym(a3a2ba2c+abc)0syma(ab)(ac)0。由舒尔得证。

x = a − 1 , y = b − 1 , z = c − 1 ( x , y , z > 0 ) x=a-1,y=b-1,z=c-1(x,y,z>0) x=a1,y=b1,z=c1(x,y,z>0)。则原命题等价于 x y z + ∑ x y + ∑ x + 45 ≥ 9 ∑ x + 27 xyz+\sum xy+\sum x+45\ge9\sum x+27 xyz+xy+x+459x+27

⇔ x y z + ∑ x y − 8 ∑ x + 18 ≥ 0 \Leftrightarrow xyz+\sum xy-8\sum x+18\ge 0 xyz+xy8x+180

∵ ∑ 1 x = 1 \because\large\sum\frac{1}{x}=\small1 x1=1

∴ x y z = ∑ x y \therefore xyz=\sum xy xyz=xy

则原命题等价于 2 x y z − 8 ∑ x + 18 ≥ 0 ⇔ x y z − 4 ∑ x + 9 ≥ 0 ⇔ 1 − 4 ∑ x x y z + 9 x y z ≥ 0 ⇔ ( ∑ 1 x ) 3 − 4 ∑ 1 x y + 9 x y z ≥ 0 \large 2xyz-8\sum x+18\ge 0\Leftrightarrow xyz-4\sum x+9\ge 0\Leftrightarrow 1-\frac{4\sum x}{xyz}+\frac{9}{xyz}\ge0\Leftrightarrow (\sum\frac{1}{x})^3-4\sum \frac{1}{xy}+\frac{9}{xyz}\ge 0 2xyz8x+180xyz4x+901xyz4x+xyz90(x1)34xy1+xyz90

由引理得证。

4.若正实数 a , b , c a,b,c a,b,c满足 ∑ a = 1 \sum a=1 a=1,证明: 10 ∑ a 3 − 9 ∑ a 5 ≥ 1 10\sum a^3-9\sum a^5\ge1 10a39a51






证:原命题等价于: 10 ( ∑ a ) 2 ∑ a 3 − 9 ∑ a 5 ≥ ( ∑ a ) 5 10(\sum a)^2\sum a^3-9\sum a^5\ge(\sum a)^5 10(a)2a39a5(a)5

暴力展开得:

10 ∑ a 5 + 10 ∑ s y m a 3 b 2 + 20 ∑ s y m a 4 b + 20 ∑ a 3 b c − 9 ∑ a 5 ≥ ∑ a 5 + 5 ∑ s y m a 4 b + 10 ∑ s y m a 3 b 2 + 20 ∑ a 3 b c + 30 ∑ a 2 b 2 c 10\sum a^5+10\sum\limits_{sym}a^3b^2+20\sum\limits_{sym}a^4b+20\sum a^3bc-9\sum a^5\ge \sum a^5+5\sum\limits_{sym}a^4b+10\sum\limits_{sym}a^3b^2+20\sum a^3bc+30\sum a^2b^2c 10a5+10syma3b2+20syma4b+20a3bc9a5a5+5syma4b+10syma3b2+20a3bc+30a2b2c

整理得: 15 ∑ s y m a 4 b ≥ 30 ∑ a 2 b 2 c ⇔ 15 ∑ s y m a 4 b ≥ 15 ∑ s y m a 2 b 2 c 15\sum\limits_{sym}a^4b\ge30\sum a^2b^2c\Leftrightarrow15\sum\limits_{sym}a^4b\ge15\sum\limits_{sym} a^2b^2c 15syma4b30a2b2c15syma4b15syma2b2c。由米尔黑格得证。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值