线性规划(基本原理+例题解析)

目录

前言

一、什么是线性规划?

二、如何将线性规划条件化成标准形式?

三、基本概念

四、线性规划中的定理

五、例题分析

六、总结


前言

在学习了前期最优化的基本思想后,今天我们开启一个新的篇章——线性规划。


一、什么是线性规划?

线性规划:(要求)目标函数和约束函数都是线性函数,求解的方法是单纯形法。

注:只要可行域非空有界,则线性规划一定有解,并存在于可行域的顶点或边界上。


二、如何将线性规划条件化成标准形式?

  1. 左右两端同时乘以-1(将最大化问题转化成最小化问题)

  2. 加入松弛变量(将不等式转化为等式)

  3. 无约束变量(自由变量)转变成满足约束条件的非负数之差


三、基本概念

假设 A 是约束方程组的系数矩阵,秩为 m ,则 A 中一定存在 m 阶非奇异子矩阵 B,称 B 是线性规划的一个基,也称基矩阵。基的个数\leq C_{n}^{m}=\frac{n!}{m!(n-m)!}

基向量:矩阵 B 是由 m 个线性无关的列向量组成,可令 B = (p_{1},p_{2},...,p_{m}),其中 p_{1},p_{2},...,p_{m} 为基向量。

非基向量:在与基向量选定的向量组合除外,剩余的向量称为非基向量。

基变量:与基向量 p_{1},p_{2},...,p_{m} 对应的 x_{1},x_{2},...,x_{m} 称为基变量。

非基变量:与非基变量 p_{m+1},p_{m+2},...,p_{n} 对应的 x_{m+1},x_{m+2},...,x_{n} 称为非基变量。


可行解:x=\binom{x_{B}}{x_{N}}既满足 AX=b,又满足 x\geq0

基本解:\bar{x}=\binom{B^{-1}b}{0} 虽然满足 AX=b,但不一定满足 \bar{x}\geq0

基本可行解:\bar{x}=\binom{B^{-1}b}{0} 既满足 AX=b,又满足 \bar{x}\geq0

                                若:B^{-1}b> 0,则称它是非退化的;

                                若:B^{-1}b= 0,则称它是退化的。


四、线性规划中的定理

定理1:线性规划的可行解 \bar{x} 为基本可行解的充要条件是:它的非零向量对应的列向量线性无关。

定理2:\bar{x} 是线性规划的基本可行解的充要条件是:它是线性规划的可行域的极点。

定理3:如果线性规划有可行解,则必有基本可行解。

定理4:如果线性规划的可行域 K 非空有界,则线性规划必存在最优解,且其中至少有一个基本可行解是有最优解。

定理5:如果线性规划的可行域 K 非空有界,则线性规划必存在最优解的充要条件是:对于 K 的任一极方向 d_{1} ,均有c^{T}d\geq 0

那么我们由此可以分析得到线性规划解的情况:

  1. 线性规划有唯一解:此时,最优解恰好在可行域的某一个极点处取到;
  2. 线性规划有无穷多个最优解:此时,最优解在可行域的某条棱上达到;
  3. 线性规划有可行解,但没有最优解:此时,可行域无界,目标函数无下界;
  4. 线性规划无可行解:此时,可行域是空集。

五、例题分析

求基本可行解:

min x_{1}-x_{2}

s.t.

x_{1}+x_{2}+x_{3}\leq 5

-x_{1}+x_{2}+2x_{3}\leq 6

x_{1},x_{2},x_{3}\geq 0

解:首先将不等式转化为等式,化为标准形式:

x_{1}+x_{2}+x_{3}+x_{4}= 5

-x_{1}+x_{2}+2x_{3}+x_{5}= 6

x_{1},x_{2},x_{3},x_{4},x_{5}\geq 0

约束系数矩阵和约束右端向量分别记作:

A =\begin{pmatrix} p_{1},p_{2},p_{3},p_{4},p_{5} \end{pmatrix}=\bigl(\begin{smallmatrix} 1 &1 &1&1&0 \\ -1 & 1&2&0&1 \end{smallmatrix}\bigr)

b=\binom{5}{6}

目标系数向量为:

c=\bigl(\begin{smallmatrix} c_{1} &c_{2} & c_{3} & c_{4} & c_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &-1 & 0 &0 & 0 \end{smallmatrix}\bigr)

A 中的向量均线性无关,故基的个数是 C_{n}^{m}=\frac{n!}{m!(n-m)!}=\frac{5!}{2!(5-2)!}=10,需要我们挨个分析

1)令B=\bigl(\begin{smallmatrix} p_{1} & p_{2} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\-1 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} \frac{1}{2}&-\frac{1}{2} \\\frac{1}{2} & \frac{1}{2}\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{2})=(1,-1)

x_{B}=\binom{x_{1}}{x_{2}}=B^{-1}b=\bigl(\begin{smallmatrix} \frac{1}{2}&-\frac{1}{2} \\\frac{1}{2} & \frac{1}{2}\end{smallmatrix}\bigr)\binom{5}{6}=\binom{-\frac{1}{2}}{\frac{11}{2}}

不符合条件(\bar{x}\geq0

2)令B=\bigl(\begin{smallmatrix} p_{1} & p_{3} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\-1 & 2\end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} \frac{2}{3}&-\frac{1}{3} \\\frac{1}{3} & \frac{1}{3}\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{3})=(1,0)

x_{B}=\binom{x_{1}}{x_{3}}=B^{-1}b=\bigl(\begin{smallmatrix} \frac{2}{3}&-\frac{1}{3} \\\frac{1}{3} & \frac{1}{3}\end{smallmatrix}\bigr)\binom{5}{6}=\binom{\frac{4}{3}}{\frac{11}{3}}

x^{(1)}=(\frac{4}{3},0,\frac{11}{3},0,0)^{T}f=c_{B}x_{B}=\frac{4}{3}

3)令B=\bigl(\begin{smallmatrix} p_{1} & p_{4} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\-1 & 0 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 0&-1\\1&1\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{4})=(1,0)

x_{B}=\binom{x_{1}}{x_{4}}=B^{-1}b=\bigl(\begin{smallmatrix} 0&-1 \\1 & 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{-6}{11}

不符合条件(\bar{x}\geq0

4)令B=\bigl(\begin{smallmatrix} p_{1} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\-1 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&0 \\1&1\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{5})=(1,0)

x_{B}=\binom{x_{1}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0\\1& 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{11}

x^{(2)}=(5,0,0,0,11)^{T}f=c_{B}x_{B}=5

5)令B=\bigl(\begin{smallmatrix} p_{2} & p_{3} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\1 & 2 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 2&-1 \\-1& 1\end{smallmatrix}\bigr)c_{B}=(c_{2},c_{3})=(-1,0)

x_{B}=\binom{x_{2}}{x_{3}}=B^{-1}b=\bigl(\begin{smallmatrix} 2&-1 \\-1 & 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{4}{1}

x^{(3)}=(0,4,1,0,0)^{T}f=c_{B}x_{B}=-4

6)令B=\bigl(\begin{smallmatrix} p_{2} & p_{4} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\1 & 0 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 0&1\\1 &-1\end{smallmatrix}\bigr)c_{B}=(c_{2},c_{4})=(-1,0)

x_{B}=\binom{x_{2}}{x_{4}}=B^{-1}b=\bigl(\begin{smallmatrix} 0&1 \\1& -1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{6}{-1}

不符合条件(\bar{x}\geq0

7)令B=\bigl(\begin{smallmatrix} p_{2} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\1 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&0 \\-1 &1\end{smallmatrix}\bigr)c_{B}=(c_{2},c_{5})=(-1,0)

x_{B}=\binom{x_{2}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0\\-1& 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{1}

x^{(4)}=(0,5,0,0,1)^{T}f=c_{B}x_{B}=-5

8)令B=\bigl(\begin{smallmatrix} p_{3} & p_{4} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\2 & 0 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix}0&\frac{1}{2} \\1& -\frac{1}{2}\end{smallmatrix}\bigr)c_{B}=(c_{3},c_{4})=(0,0)

x_{B}=\binom{x_{3}}{x_{4}}=B^{-1}b=\bigl(\begin{smallmatrix}0&\frac{1}{2} \\1&- \frac{1}{2}\end{smallmatrix}\bigr)\binom{5}{6}=\binom{3}{2}

x^{(5)}=(0,0,3,2,0)^{T}f=c_{B}x_{B}=0

9)令B=\bigl(\begin{smallmatrix} p_{3} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\2 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&-2\\1& 0\end{smallmatrix}\bigr)c_{B}=(c_{3},c_{5})=(0,0)

x_{B}=\binom{x_{3}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0 \\-2 & 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{-4}

不符合条件(\bar{x}\geq0

10)令B=\bigl(\begin{smallmatrix} p_{4} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\0 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&0\\0 & 1\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{2})=(1,-1)

x_{B}=\binom{x_{4}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0 \\0& 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{6}

x^{(6)}=(0,0,0,5,6)^{T}f=c_{B}x_{B}=0

综上所述,最优解为:x^{(*)}=(0,5,0,0,1)^{T},最优值为:f_{min}=-5


六、总结

这一章节我们了解了线性规划的基本性质,以及如何求解线性规划的基本解,但是计算过程太繁琐,下一节我们采用单纯形法来求解最优化的线性规划问题。

(行文中若有纰漏,希望大家指正)

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 线性代数与空间解析几何PDF是一本涉及线性代数与空间解析几何知识的电子书。线性代数是数学中的一个重要分支,研究向量空间及其上的线性变换和线性方程组等问题。它的应用广泛,被用于物理学、经济学、计算机科学等领域。空间解析几何是数学中的一个分支,用于研究几何空间中的点、直线、平面等几何对象的性质和关系。它通过使用坐标系和代数方法,可以更方便地进行几何问题的分析和求解。 这本电子书综合了线性代数和空间解析几何的内容,从基础概念开始介绍,逐渐深入到更高级的内容。它包括了向量的定义、向量空间的性质、线性变换、矩阵和行列式、特征值和特征向量等线性代数的重要概念。同时,它也涵盖了三维空间中的点与向量、直线和平面的方程、空间中线性方程组的解等空间解析几何的内容。 这本PDF书籍可以作为线性代数和空间解析几何方面的入门教材,也可作为进一步学习和研究的参考资料。它提供了易于理解的解释和详细的例题,加强了读者对这些数学概念的理解和应用能力。此外,电子书的形式使得读者能够随时随地方便地进行学习和复习。 总之,线性代数与空间解析几何PDF是一本涵盖了线性代数和空间解析几何知识的电子书,对于学习者来说,它是一份非常有价值的学习资料。 ### 回答2: 线性代数与空间解析几何是一本关于数学学科的书籍,它涵盖了线性代数和空间解析几何的内容。线性代数是研究向量空间和线性变换的一门学科,它在许多领域都有广泛的应用,包括物理学、工程学、计算机科学等。线性代数的基本概念包括向量、矩阵矩阵运算和矩阵方程等,通过对这些概念的理解和运用,可以解决许多实际问题。 空间解析几何是研究空间中点、直线、平面等几何对象的一门学科,它利用向量的方法研究几何问题。空间解析几何的基本概念包括点的坐标、向量的加法和数量积、直线和平面的方程等。通过这些概念的运用,可以描述和研究空间中的几何对象和它们之间的关系。 这本书将线性代数和空间解析几何的内容有机地结合在一起,旨在帮助读者理解并应用这两个学科的知识。它从基础概念开始介绍,包括向量的表示和运算、线性方程组的解法和矩阵的性质等。随后,它讲解了线性变换、特征值和特征向量等重要概念。最后,它介绍了空间解析几何的基本概念和相关定理。 这本书的特点之一是注重理论与实际应用的结合。它不仅提供了理论知识和推导过程,还给出了一些实际问题的解题思路和方法。此外,它配有大量的例题和习题,以帮助读者巩固所学内容。总之,线性代数与空间解析几何是一本系统、全面、实用的教材,适合数学、物理、工程等专业的学生学习和参考。 ### 回答3: 线性代数与空间解析几何是一本关于数学领域的教材或参考书籍,主要介绍线性代数和空间解析几何的基本概念、原理和应用。线性代数是数学中的一门重要学科,研究向量空间、线性变换、矩阵和行列式等内容。它在数学、物理、工程、计算机科学等领域中都有广泛的应用。 而空间解析几何则是用数学的方法来研究几何学问题,主要关注在三维空间中的点、直线、平面以及它们之间的关系和性质。空间解析几何主要使用向量的方法来进行求解,通过坐标系中的向量运算、方程和参数方程,来描述和解决几何问题。 这本书以简洁明了的方式讲解了线性代数和空间解析几何的基本理论,深入浅出地介绍了相关的数学概念和定理,并通过大量的示例和习题来帮助读者更好地理解和掌握知识。它既适合作为高等学校数学专业的教材,也适合作为自学的参考书。 对于学习线性代数和空间解析几何的读者来说,这本书是一本很好的选择。它将复杂的数学概念和方法进行了系统化的整理,让读者能够更好地理解和应用相关的知识。同时,这本书还提供了丰富的例题和习题,帮助读者锻炼和巩固所学的知识,提高解题能力。 总之,线性代数与空间解析几何是一本重要的数学教材,通过对线性代数和空间解析几何的详细讲解,帮助读者建立起坚实的数学基础,并为进一步学习更高级、更复杂的数学知识打下良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

背对人潮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值