线性规划(基本原理+例题解析)

目录

前言

一、什么是线性规划?

二、如何将线性规划条件化成标准形式?

三、基本概念

四、线性规划中的定理

五、例题分析

六、总结


前言

在学习了前期最优化的基本思想后,今天我们开启一个新的篇章——线性规划。


一、什么是线性规划?

线性规划:(要求)目标函数和约束函数都是线性函数,求解的方法是单纯形法。

注:只要可行域非空有界,则线性规划一定有解,并存在于可行域的顶点或边界上。


二、如何将线性规划条件化成标准形式?

  1. 左右两端同时乘以-1(将最大化问题转化成最小化问题)

  2. 加入松弛变量(将不等式转化为等式)

  3. 无约束变量(自由变量)转变成满足约束条件的非负数之差


三、基本概念

假设 A 是约束方程组的系数矩阵,秩为 m ,则 A 中一定存在 m 阶非奇异子矩阵 B,称 B 是线性规划的一个基,也称基矩阵。基的个数\leq C_{n}^{m}=\frac{n!}{m!(n-m)!}

基向量:矩阵 B 是由 m 个线性无关的列向量组成,可令 B = (p_{1},p_{2},...,p_{m}),其中 p_{1},p_{2},...,p_{m} 为基向量。

非基向量:在与基向量选定的向量组合除外,剩余的向量称为非基向量。

基变量:与基向量 p_{1},p_{2},...,p_{m} 对应的 x_{1},x_{2},...,x_{m} 称为基变量。

非基变量:与非基变量 p_{m+1},p_{m+2},...,p_{n} 对应的 x_{m+1},x_{m+2},...,x_{n} 称为非基变量。


可行解:x=\binom{x_{B}}{x_{N}}既满足 AX=b,又满足 x\geq0

基本解:\bar{x}=\binom{B^{-1}b}{0} 虽然满足 AX=b,但不一定满足 \bar{x}\geq0

基本可行解:\bar{x}=\binom{B^{-1}b}{0} 既满足 AX=b,又满足 \bar{x}\geq0

                                若:B^{-1}b> 0,则称它是非退化的;

                                若:B^{-1}b= 0,则称它是退化的。


四、线性规划中的定理

定理1:线性规划的可行解 \bar{x} 为基本可行解的充要条件是:它的非零向量对应的列向量线性无关。

定理2:\bar{x} 是线性规划的基本可行解的充要条件是:它是线性规划的可行域的极点。

定理3:如果线性规划有可行解,则必有基本可行解。

定理4:如果线性规划的可行域 K 非空有界,则线性规划必存在最优解,且其中至少有一个基本可行解是有最优解。

定理5:如果线性规划的可行域 K 非空有界,则线性规划必存在最优解的充要条件是:对于 K 的任一极方向 d_{1} ,均有c^{T}d\geq 0

那么我们由此可以分析得到线性规划解的情况:

  1. 线性规划有唯一解:此时,最优解恰好在可行域的某一个极点处取到;
  2. 线性规划有无穷多个最优解:此时,最优解在可行域的某条棱上达到;
  3. 线性规划有可行解,但没有最优解:此时,可行域无界,目标函数无下界;
  4. 线性规划无可行解:此时,可行域是空集。

五、例题分析

求基本可行解:

min x_{1}-x_{2}

s.t.

x_{1}+x_{2}+x_{3}\leq 5

-x_{1}+x_{2}+2x_{3}\leq 6

x_{1},x_{2},x_{3}\geq 0

解:首先将不等式转化为等式,化为标准形式:

x_{1}+x_{2}+x_{3}+x_{4}= 5

-x_{1}+x_{2}+2x_{3}+x_{5}= 6

x_{1},x_{2},x_{3},x_{4},x_{5}\geq 0

约束系数矩阵和约束右端向量分别记作:

A =\begin{pmatrix} p_{1},p_{2},p_{3},p_{4},p_{5} \end{pmatrix}=\bigl(\begin{smallmatrix} 1 &1 &1&1&0 \\ -1 & 1&2&0&1 \end{smallmatrix}\bigr)

b=\binom{5}{6}

目标系数向量为:

c=\bigl(\begin{smallmatrix} c_{1} &c_{2} & c_{3} & c_{4} & c_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &-1 & 0 &0 & 0 \end{smallmatrix}\bigr)

A 中的向量均线性无关,故基的个数是 C_{n}^{m}=\frac{n!}{m!(n-m)!}=\frac{5!}{2!(5-2)!}=10,需要我们挨个分析

1)令B=\bigl(\begin{smallmatrix} p_{1} & p_{2} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\-1 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} \frac{1}{2}&-\frac{1}{2} \\\frac{1}{2} & \frac{1}{2}\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{2})=(1,-1)

x_{B}=\binom{x_{1}}{x_{2}}=B^{-1}b=\bigl(\begin{smallmatrix} \frac{1}{2}&-\frac{1}{2} \\\frac{1}{2} & \frac{1}{2}\end{smallmatrix}\bigr)\binom{5}{6}=\binom{-\frac{1}{2}}{\frac{11}{2}}

不符合条件(\bar{x}\geq0

2)令B=\bigl(\begin{smallmatrix} p_{1} & p_{3} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\-1 & 2\end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} \frac{2}{3}&-\frac{1}{3} \\\frac{1}{3} & \frac{1}{3}\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{3})=(1,0)

x_{B}=\binom{x_{1}}{x_{3}}=B^{-1}b=\bigl(\begin{smallmatrix} \frac{2}{3}&-\frac{1}{3} \\\frac{1}{3} & \frac{1}{3}\end{smallmatrix}\bigr)\binom{5}{6}=\binom{\frac{4}{3}}{\frac{11}{3}}

x^{(1)}=(\frac{4}{3},0,\frac{11}{3},0,0)^{T}f=c_{B}x_{B}=\frac{4}{3}

3)令B=\bigl(\begin{smallmatrix} p_{1} & p_{4} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\-1 & 0 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 0&-1\\1&1\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{4})=(1,0)

x_{B}=\binom{x_{1}}{x_{4}}=B^{-1}b=\bigl(\begin{smallmatrix} 0&-1 \\1 & 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{-6}{11}

不符合条件(\bar{x}\geq0

4)令B=\bigl(\begin{smallmatrix} p_{1} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\-1 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&0 \\1&1\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{5})=(1,0)

x_{B}=\binom{x_{1}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0\\1& 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{11}

x^{(2)}=(5,0,0,0,11)^{T}f=c_{B}x_{B}=5

5)令B=\bigl(\begin{smallmatrix} p_{2} & p_{3} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\1 & 2 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 2&-1 \\-1& 1\end{smallmatrix}\bigr)c_{B}=(c_{2},c_{3})=(-1,0)

x_{B}=\binom{x_{2}}{x_{3}}=B^{-1}b=\bigl(\begin{smallmatrix} 2&-1 \\-1 & 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{4}{1}

x^{(3)}=(0,4,1,0,0)^{T}f=c_{B}x_{B}=-4

6)令B=\bigl(\begin{smallmatrix} p_{2} & p_{4} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\1 & 0 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 0&1\\1 &-1\end{smallmatrix}\bigr)c_{B}=(c_{2},c_{4})=(-1,0)

x_{B}=\binom{x_{2}}{x_{4}}=B^{-1}b=\bigl(\begin{smallmatrix} 0&1 \\1& -1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{6}{-1}

不符合条件(\bar{x}\geq0

7)令B=\bigl(\begin{smallmatrix} p_{2} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\1 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&0 \\-1 &1\end{smallmatrix}\bigr)c_{B}=(c_{2},c_{5})=(-1,0)

x_{B}=\binom{x_{2}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0\\-1& 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{1}

x^{(4)}=(0,5,0,0,1)^{T}f=c_{B}x_{B}=-5

8)令B=\bigl(\begin{smallmatrix} p_{3} & p_{4} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &1 \\2 & 0 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix}0&\frac{1}{2} \\1& -\frac{1}{2}\end{smallmatrix}\bigr)c_{B}=(c_{3},c_{4})=(0,0)

x_{B}=\binom{x_{3}}{x_{4}}=B^{-1}b=\bigl(\begin{smallmatrix}0&\frac{1}{2} \\1&- \frac{1}{2}\end{smallmatrix}\bigr)\binom{5}{6}=\binom{3}{2}

x^{(5)}=(0,0,3,2,0)^{T}f=c_{B}x_{B}=0

9)令B=\bigl(\begin{smallmatrix} p_{3} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\2 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&-2\\1& 0\end{smallmatrix}\bigr)c_{B}=(c_{3},c_{5})=(0,0)

x_{B}=\binom{x_{3}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0 \\-2 & 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{-4}

不符合条件(\bar{x}\geq0

10)令B=\bigl(\begin{smallmatrix} p_{4} & p_{5} \end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix} 1 &0 \\0 & 1 \end{smallmatrix}\bigr),则B^{-1}=\bigl(\begin{smallmatrix} 1&0\\0 & 1\end{smallmatrix}\bigr)c_{B}=(c_{1},c_{2})=(1,-1)

x_{B}=\binom{x_{4}}{x_{5}}=B^{-1}b=\bigl(\begin{smallmatrix} 1&0 \\0& 1\end{smallmatrix}\bigr)\binom{5}{6}=\binom{5}{6}

x^{(6)}=(0,0,0,5,6)^{T}f=c_{B}x_{B}=0

综上所述,最优解为:x^{(*)}=(0,5,0,0,1)^{T},最优值为:f_{min}=-5


六、总结

这一章节我们了解了线性规划的基本性质,以及如何求解线性规划的基本解,但是计算过程太繁琐,下一节我们采用单纯形法来求解最优化的线性规划问题。

(行文中若有纰漏,希望大家指正)

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

背对人潮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值