线性规划的基本解、基本可行解和可行解

线性规划中,基本解、基本可行解和可行解是非常重要的概念,特别是在使用单纯形法求解时。下面详细解释这些概念,并说明如何计算它们。


1. 线性规划问题的标准形式

线性规划的标准形式为:

\text{maximize (or minimize) } z = c^T x

\text{subject to: } Ax = b, \, x \geq 0

其中:

  • A 是 m×n 的矩阵(m≤n)。
  • b 是 m 维列向量。
  • c 是 n 维列向量。
  • x 是 n 维决策变量向量。

在标准形式中,所有约束为等式,且变量非负。


2. 基本解

定义
  • 基本解是线性规划约束 Ax=b 的一个特殊解。
  • 若 x 是 Ax=b  的解,同时满足:
    • x 至多有 m 个非零分量(称为基变量)。
    • 其余 n−m 个分量固定为 0(称为非基变量)。
计算方法
  1. 从 n 个变量中选取 m 个变量作为基变量(假设它们构成矩阵的一个可逆子矩阵)。
  2. 将剩余的 n−m 个变量设为 0。
  3. 解方程 Ax=b ,得到对应的解 x。
  4. 如果解存在,则它是一个基本解。
特点
  • 一个基本解可能是不可行的(即 x 中有负值)。

3. 基本可行解

定义
  • 基本可行解是满足约束 Ax=b 且 x≥0 的基本解。
  • 也就是说,基本可行解是一个非负的基本解。
计算方法
  1. 按照计算基本解的方法,先求出所有基本解。
  2. 筛选出满足 x≥0 的解,这些解就是基本可行解。
特点
  • 基本可行解是线性规划的一个重要概念,因为单纯形法的每一步都在基本可行解之间移动。
  • 一个线性规划问题可能有多个基本可行解。

4. 可行解

定义
  • 可行解是满足所有约束条件的解:

    Ax=b , x≥0 

计算方法
  • 与基本解或基本可行解不同,可行解不需要有特定数量的零元素。
  • 直接检查解是否满足约束 Ax=b 和 x≥0 即可。
特点
  • 可行解的集合构成一个凸集,即若 x_1​ 和 x_2 是可行解,则任意 \theta \in [0, 1] 的凸组合 \theta x_1 + (1 - \theta) x_2 也是可行解。
  • 基本可行解是可行解的一个子集。

5. 关系总结

  • 基本解:满足 Ax=b 且至多有 m 个非零分量。
  • 基本可行解:满足 Ax=b 、x≥0 ,且是一个基本解。
  • 可行解:满足 Ax=b ,但不要求是基本解。

6. 示例

问题

考虑以下线性规划问题:

\text{maximize } z = x_1 + x_2

\text{subject to: } \begin{cases} x_1 + 2x_2 = 4, \\ x_1, x_2 \geq 0. \end{cases}

基本解
  1. A = [1 \ 2],b=4 。
  2. 共有两个变量(n=2),但只有一个等式约束(m=1)。
  3. 至多有 m=1 个非零变量:
    • x_1 = 0,解 x_2 = 2,得到基本解 x = [0, 2]^T
    • x_2 = 0,解 x_1 = 4,得到基本解 x = [4, 0]^T
基本可行解

上述两个基本解 x = [0, 2]^T 和 x = [4, 0]^T 都满足非负性条件 x≥0 ,因此它们是基本可行解。

可行解

可行解的集合为满足约束 x_1 + 2x_2 = 4x_1, x_2 \geq 0 的所有 x ,即位于直线x_1 + 2x_2 = 4 且第一象限内的所有点。


7. 如何计算基本解、基本可行解和可行解?

步骤 1:将问题标准化

确保问题为标准形式 Ax=b , x≥0 。

步骤 2:枚举所有基本解
  1. 从 n 个变量中选择 m 个变量作为基变量。
  2. 将其余 n−m 个变量置为 0。
  3. 解方程 Ax=b ,得到一个基本解。
步骤 3:筛选基本可行解

检查基本解是否满足 x≥0 。满足的即为基本可行解。

步骤 4:检查可行解

直接验证解是否满足 Ax=b 和 x≥0 。如果问题是连续的,可以用几何方法描述可行解的范围。


8. 总结

  • 基本解:通过选取 m 个基变量并解 Ax=b 得到的解,但可能不满足非负性。
  • 基本可行解:基本解中满足 x≥0 的解。
  • 可行解:满足 Ax=b 和 x≥0 的所有解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值