在线性规划中,基本解、基本可行解和可行解是非常重要的概念,特别是在使用单纯形法求解时。下面详细解释这些概念,并说明如何计算它们。
1. 线性规划问题的标准形式
线性规划的标准形式为:
其中:
- A 是 m×n 的矩阵(m≤n)。
- b 是 m 维列向量。
- c 是 n 维列向量。
- x 是 n 维决策变量向量。
在标准形式中,所有约束为等式,且变量非负。
2. 基本解
定义
- 基本解是线性规划约束 Ax=b 的一个特殊解。
- 若 x 是 Ax=b 的解,同时满足:
- x 至多有 m 个非零分量(称为基变量)。
- 其余 n−m 个分量固定为 0(称为非基变量)。
计算方法
- 从 n 个变量中选取 m 个变量作为基变量(假设它们构成矩阵的一个可逆子矩阵)。
- 将剩余的 n−m 个变量设为 0。
- 解方程 Ax=b ,得到对应的解 x。
- 如果解存在,则它是一个基本解。
特点
- 一个基本解可能是不可行的(即 x 中有负值)。
3. 基本可行解
定义
- 基本可行解是满足约束 Ax=b 且 x≥0 的基本解。
- 也就是说,基本可行解是一个非负的基本解。
计算方法
- 按照计算基本解的方法,先求出所有基本解。
- 筛选出满足 x≥0 的解,这些解就是基本可行解。
特点
- 基本可行解是线性规划的一个重要概念,因为单纯形法的每一步都在基本可行解之间移动。
- 一个线性规划问题可能有多个基本可行解。
4. 可行解
定义
- 可行解是满足所有约束条件的解:
Ax=b , x≥0
计算方法
- 与基本解或基本可行解不同,可行解不需要有特定数量的零元素。
- 直接检查解是否满足约束 Ax=b 和 x≥0 即可。
特点
- 可行解的集合构成一个凸集,即若
和
是可行解,则任意
的凸组合
也是可行解。
- 基本可行解是可行解的一个子集。
5. 关系总结
- 基本解:满足 Ax=b 且至多有 m 个非零分量。
- 基本可行解:满足 Ax=b 、x≥0 ,且是一个基本解。
- 可行解:满足 Ax=b ,但不要求是基本解。
6. 示例
问题
考虑以下线性规划问题:
基本解
- 将
,b=4 。
- 共有两个变量(n=2),但只有一个等式约束(m=1)。
- 至多有 m=1 个非零变量:
- 令
,解
,得到基本解
。
- 令
,解
,得到基本解
。
- 令
基本可行解
上述两个基本解 和
都满足非负性条件 x≥0 ,因此它们是基本可行解。
可行解
可行解的集合为满足约束 且
的所有 x ,即位于直线
且第一象限内的所有点。
7. 如何计算基本解、基本可行解和可行解?
步骤 1:将问题标准化
确保问题为标准形式 Ax=b , x≥0 。
步骤 2:枚举所有基本解
- 从 n 个变量中选择 m 个变量作为基变量。
- 将其余 n−m 个变量置为 0。
- 解方程 Ax=b ,得到一个基本解。
步骤 3:筛选基本可行解
检查基本解是否满足 x≥0 。满足的即为基本可行解。
步骤 4:检查可行解
直接验证解是否满足 Ax=b 和 x≥0 。如果问题是连续的,可以用几何方法描述可行解的范围。
8. 总结
- 基本解:通过选取 m 个基变量并解 Ax=b 得到的解,但可能不满足非负性。
- 基本可行解:基本解中满足 x≥0 的解。
- 可行解:满足 Ax=b 和 x≥0 的所有解。