线性规则的对偶理论

目录

前言:

对偶规则的形式:

对偶理论:

例题解析:


前言:

线性规则中,用同样的条件和数据从不同的角度描述问题建立起两个不同的数学模型。这两个数字模型有着密切的关系,研究他们的关系,可以对线性规划理论有进一步认识,并且可以从中导出求解线性规则的方法。

每一个线性规划问题,我们都可以构造出与之相对应的另一个线性规则问题,若称前者为原问题,那么后者就称为它的对偶问题。


对偶规则的形式:

LP:原规则DP:对偶规则
变量 ≥ 0行约束 ≤
变量无非负限制行约束 =
行约束 ≥变量 ≥ 0
行约束 = 变量无非负限制

对于 LP ,有线性规划条件:

\left\{\begin{matrix} min f(x)=c^{T}x\\ s.t. Ax\geq b \\ x\geq 0 \end{matrix}\right.

可转化为 DP :

\left\{\begin{matrix} min w(y)=b^{T}y\\ s.t. A^{T}x\leq c \\ y\geq 0 \end{matrix}\right.

例如下面这道例题:

\left\{\begin{matrix} min f(x)=6x_{1}+4x_{2}+7x_{3}\\ s.t. x_{1}+x_{3}\geq 2 \\ 3x_{1}+2x_{2}+x_{3}\geq 4\\x_{1},x_{2},x_{3}\geq 0 \end{matrix}\right.

其中  A=\left [ \begin{smallmatrix} 1 &0 &1 \\3 &2 &1 \end{smallmatrix} \right ] ,b=\left [ \begin{smallmatrix} 2 \\4 \end{smallmatrix} \right ]c^{T}=(6,4,7)

则我们根据上面的公式,可以求出:

A^{T}=\left [ \begin{smallmatrix} 1 &3 \\0 &2\\1&1 \end{smallmatrix} \right ]b^{T}=\left [ \begin{smallmatrix} 2 &4 \end{smallmatrix} \right ]

\Rightarrow \left\{\begin{matrix} max w(y)=2y_{1}+4y_{2}\\ s.t. y_{1}+3y_{2}\leq 6 \\ 2y_{2}\leq 4\\y_{1}+y_{2}\leq 7\\y_{1},y_{2}\geq 0 \end{matrix}\right.

注:由此可见,原本三个变量变成了仅两个变量,就可以简单的用图解法求出对偶规则的最优解。


对偶理论:

定理1:弱对偶原理:如果 x ,y 分别是 LP 和 DP 的可行解,则有 c^{T}x\geq b^{T}y

定理2:强对偶原理:在互为对偶的两个线性规则问题中,一个有最优解,则另一个必有最优解,并且最优值相等。

定理3:对称形式的松紧定理:如果 X 与 Y 分别是对称形式的线性规则 LP 和对偶问题 DP 的可行解,则 X 与 Y 同时也分别是各自的最优解的充要条件是:

\left\{\begin{matrix} (A^{T}Y-c)^{T}X=0\\Y^{T}(AX-b)=0 \end{matrix}\right.

(两个条件相结合看,松\Leftrightarrow紧)


例题解析:

例题:利用互补松弛条件求解线性规则问题

\left\{\begin{matrix} min f(x)=4x_{1}+3x_{2}+6x_{3}\\ s.t. 4x_{1}+x_{2}+3x_{3}\leq 30 \\ x_{1}+2x_{2}+3x_{3}\leq 40\\x_{1},x_{2},x_{3}\geq 0 \end{matrix}\right.

解:针对原问题,我们写出它的对偶问题:

\Rightarrow \left\{\begin{matrix} max w(y)=30y_{1}+40y_{2}\\ s.t. 4y_{1}+y_{2}\geq 4\\ y_{1}+2y_{2}\geq 3\\y_{1}+y_{2}\geq 2\\y_{1},y_{2}\geq 2 \end{matrix}\right.

由此,我们可以画出图像:

利用图解法得到最优解:\bar{y}=(1,1)^{T} 

由互补松紧条件:

\bar{y}_{1}=1>0\rightarrow4x_{1}+x_{2}+3x_{3}=30

\bar{y}_{2}=1>0\rightarrow x_{1}+2x_{2}+3x_{3}=40

4\bar{y}_{1}+\bar{y}_{2}> 4\rightarrow \bar{x}_{1}=0

\bar{y}_{1}+2\bar{y}_{2}=3\rightarrow \bar{x}_{2}\neq 0

\bar{y}_{1}+\bar{y}_{2}=2\rightarrow \bar{x}_{3}\neq 0

得到原问题的最优解:

\left\{\begin{matrix} 4x_{1}+x_{2}+3x_{3}=30\\ x_{1}+2x_{2}+3x_{3}=40\\ x_{1}=0\end{matrix}\right.

得到最优解 :\bar{x}=(0,10,20/3)^{T} ,最优值为 70。

(行文中若有纰漏,希望大家指正)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

背对人潮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值