深度强化学习Task3:A2C、A3C算法

本篇博客是本人参加Datawhale组队学习第三次任务的笔记
【教程地址】

Actor-Critic 算法提出的动机

蒙特卡洛策略梯度算法和基于价值的DQN族算法的优缺点在深度强化学习Task2:策略梯度算法中已经介绍过了。Actor-Critic 算法提出的主要目的是为了:

  1. 结合两类算法的优点
  2. 缓解两种方法都很难解决的高方差问题

策略梯度算法是因为直接对策略参数化,相当于既要利用策略去与环境交互采样,又要利用采样去估计策略梯度
基于价值的算法也是需要与环境交互采样来估计值函数的,因此也会有高方差的问题

Q Actor-Critic 算法

目标函数:类比Q函数, 利用Critic 网络来估计价值。
在这里插入图片描述

Actor-Critic算法的基本通用架构

  • Actor与环境交互采样,然后将采样的轨迹输入Critic网络
  • Critic网络估计出当前状态-动作对的价值
  • 根据价值更新Actor网络的梯度

在这里插入图片描述

A2C 与 A3C 算法

为了进一步缓解高方差问题,A2C中引入一个优势函数 A π ( s t , a t ) A^\pi(s_t,a_t) Aπ(st,at),计算方式如下:
A π ( s t , a t ) = Q π ( s t , a t ) − V π ( s t ) A^\pi(s_t,a_t)=Q^\pi(s_t,a_t)-V^\pi(s_t) Aπ(st,at)=Qπ(st,at)Vπ(st)

优势函数可以理解为在给定状态 s t s_t st下,选择动作 a t a_t at相对于平均水平的优势。如果优势为正,则说明选择这个动作比平均水平要好,反之如果为负则说明选择这个动作比平均水平要差。

将优势函数带入原目标函数中得到的结果如下:
在这里插入图片描述
原先的 A2C 算法相当于只有一个全局网络并持续与环境交互更新。而 A3C算法中增加了多个进程,每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,这样就能提高训练效率。
该算法结合了几个关键思想:

  • 一种更新方案:对固定长度的经验段(比如20个时间步长)进行操作,并使用这些段来计算收益和优势函数的估计值
  • 在策略和价值功能之间共享层的体系结构
  • 异步更新

在这里插入图片描述

通过查阅Open AI的相关博客发现,A2C的同步版本比异步版本(即A3C)要好。当使用单 GPU 机器时,这个 A2C 实现比 A3C 更具成本效益,当使用更大的策略时,它比仅使用 CPU 的 A3C 实现更快。具体内容可以查看:LEARNING TO REINFORCEMENT LEARN

广义优势估计

在介绍广义优势估计之前,我们先回顾一下时序差分蒙特卡洛方法

  • 时序差分方法可以在线学习,每走一步就可以更新,效率高。蒙特卡洛方法必须等游戏结束时才可以学习。
  • 时序差分方法可以从不完整序列上进行学习。蒙特卡洛方法只能从完整的序列上进行学习。
  • 时序差分方法可以在连续的环境下(没有终止)进行学习。蒙特卡洛方法只能在有终止的情况下学习。
  • 时序差分方法利用了马尔可夫性质,在马尔可夫环境下有更高的学习效率。蒙特卡洛方法没有假设环境具有马尔可夫性质,利用采样的价值来估计某个状态的价值,在不是马尔可夫的环境下更加有效。
    在这里插入图片描述
    时序差分能有效解决高方差问题但是是有偏估计,而蒙特卡洛是无偏估计但是会带来高方差问题,因此通常会结合这两个方法形成一种新的估计方式,我们称之为广义优势估计( GAE \text{GAE} GAE)。

A G A E ( γ , λ ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ λ ) l ( r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) ) \begin{aligned} A^{\mathrm{GAE}(\gamma, \lambda)}(s_t, a_t) &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} \\ &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \left(r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l})\right) \end{aligned} AGAE(γ,λ)(st,at)=l=0(γλ)lδt+l=l=0(γλ)l(rt+l+γVπ(st+l+1)Vπ(st+l))

其中 δ t + l \delta_{t+l} δt+l 表示时间步 t + l t+l t+l 时的 TD \text{TD} TD 误差。

δ t + l = r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) \begin{aligned} \delta_{t+l} = r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l}) \end{aligned} δt+l=rt+l+γVπ(st+l+1)Vπ(st+l)

\qquad λ = 0 \lambda = 0 λ=0 时, GAE \text{GAE} GAE退化为单步 TD \text{TD} TD 误差:

A G A E ( γ , 0 ) ( s t , a t ) = δ t = r t + γ V π ( s t + 1 ) − V π ( s t ) \begin{aligned} A^{\mathrm{GAE}(\gamma, 0)}(s_t, a_t) = \delta_t = r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t) \end{aligned} AGAE(γ,0)(st,at)=δt=rt+γVπ(st+1)Vπ(st)

\qquad λ = 1 \lambda = 1 λ=1 时, GAE \text{GAE} GAE 退化为蒙特卡洛估计:

A G A E ( γ , 1 ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ ) l δ t + l \begin{aligned} A^{\mathrm{GAE}(\gamma, 1)}(s_t, a_t) = \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} = \sum_{l=0}^{\infty}(\gamma)^l \delta_{t+l} \end{aligned} AGAE(γ,1)(st,at)=l=0(γλ)lδt+l=l=0(γ)lδt+l

A3C实现

import torch
import os
import random
import seaborn as sns
import gymnasium as gym
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from collections import deque
from torch.distributions import Categorical
from multiprocessing import Process, Pipe
from multiprocessing_env import SubprocVecEnv

建立Actor和Critic网络

这里针对简单的环境建立一个ActorCritic网络,并且只针对离散动作空间进行处理,演员和评论家共享参数

class ActorCritic(nn.Module):
    ''' A2C网络模型,包含一个Actor和Critic
    '''
    def __init__(self, input_dim, output_dim, hidden_dim):
        super(ActorCritic, self).__init__()
        self.critic = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 1)
        )
        
        self.actor = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, output_dim),
            nn.Softmax(dim=1),
        )
        
    def forward(self, x):
        value = self.critic(x)
        probs = self.actor(x)
        return probs, value # 返回动作概率分布和价值

定义智能体

首先定义一个缓冲区,用于收集模型展开n_steps的轨迹,环境会根据选取的动作返回新的观测状态、奖励等信息,将这些信息存储在缓冲区中,在A3C算法中,等到智能体执行n步动作之后,将所有信息取出来进行之后的计算。

class PGReplay():
    def __init__(self):
        self.buffer = deque() # 创建缓冲区
    def push(self, transitions):
        self.buffer.append(transitions) # 将收集的信息存放在缓冲区中
    def sample(self):
        batch = list(self.buffer)
        return zip(*batch) # 按数据类别取出
    def clear(self):
        self.buffer.clear() # 清空缓冲区

A3C算法实际上是在A2C算法的基础上实现的,算法原理相同。A2C算法的基本原理是在演员-评论家算法的基础上引入优势函数的概念。评论家是一个函数逼近器,输入当前观测到的状态,输出评分值,也就是 Q Q Q值。而 Q Q Q值实际上可以分解为两部分,即 Q ( s , a ) = A ( s , a ) + V ( s ) Q(s,a)=A(s,a)+V(s) Q(s,a)=A(s,a)+V(s)。其中 A ( s , a ) A(s,a) A(s,a)即为优势函数,评价的是在给定状态下当前选定动作相较于其他动作的好坏,它可以通过采样数据计算得出。A2C算法的核心就在于让评论家学习 A ( s , a ) A(s,a) A(s,a)而不再是学习 Q ( s , a ) Q(s,a) Q(s,a)
损失函数一般分为三项,策略梯度损失值残差策略熵正则

  • 策略梯度损失用于不断优化提升reward
  • 值残差用于使critic网络不断逼近真实的reward
  • 策略熵正则能够为了保证action的多样性,增加智能体探索能力。
class A3C:
    def __init__(self, cfg) -> None:
        self.gamma = cfg.gamma
        self.device = cfg.device
        self.model = ActorCritic(cfg.state_dim, cfg.action_dim, cfg.hidden_dim).to(self.device)
        self.optimizer = optim.Adam(self.model.parameters(), lr = cfg.lr)
        self.memory = PGReplay()
        self.critic_loss_coef = cfg.critic_loss_coef
        self.entropy_coef = cfg.entropy_coef
    def compute_returns(self, next_value, rewards, masks):
        '''计算一个轨迹的累积奖励
        '''
        R = next_value
        returns = []
        for step in reversed(range(len(rewards))):
            R = rewards[step] + self.gamma * R * masks[step]
            returns.insert(0, R)
        return returns
    def sample_action(self,state):
        '''动作采样函数
        '''
        state = torch.tensor(state, device=self.device, dtype=torch.float32)
        probs, value = self.model(state)
        dist = Categorical(probs)
        action = dist.sample() # Tensor([0, 1, 1, 0, ...])
        return dist, value, action
    @torch.no_grad()
    def predict_action(self,state):
        '''预测动作,与动作采样函数功能相同,只是执行该函数时不需要计算梯度
        '''
        state = torch.tensor(state, device=self.device, dtype=torch.float32)
        probs, value = self.model(state)
        dist = Categorical(probs)
        action = dist.sample()
        return action.detach().cpu().numpy()
    def update(self, next_state, entropy):
        log_probs, values, rewards, masks = self.memory.sample() # 从缓冲区中取出信息进行计算
        next_state = torch.tensor(next_state, dtype = torch.float32).to(self.device) # numpy类型转换为tensor类型
        _, next_value = self.model(next_state) # shape: torch.Size([n_envs, 1])
        returns = self.compute_returns(next_value, rewards, masks) # shape: (n_steps, n_envs)
        log_probs = torch.cat(log_probs) # shape: torch.Size([n_steps * n_envs])
        returns = torch.cat(returns).detach() # shape: torch.Size([n_steps * n_envs])
        values = torch.cat(values) # shape: torch.Size([n_steps * n_envs])
        advantages = returns - values # shape: torch.Size([n_steps * n_envs])
        actor_loss = - (log_probs * advantages.detach()).mean() # 计算策略梯度损失
        critic_loss = advantages.pow(2).mean() # 计算值残差
        loss = actor_loss + self.critic_loss_coef * critic_loss - self.entropy_coef * entropy # 总loss
        ## 梯度更新
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        self.memory.clear() # 清空缓冲区

定义环境

在定义环境时,分别定义单个环境和多个并行的环境,用于测试和训练。

def make_envs(env_name):
    '''创建单个环境
    '''
    def __thunk():
        env = gym.make(env_name)
        return env
    return __thunk
def all_seed(seed = 1):
    ''' 万能的seed函数
    '''
    if seed == 0: # 不设置seed
        return 
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed) # config for CPU
    torch.cuda.manual_seed(seed) # config for GPU
    os.environ['PYTHONHASHSEED'] = str(seed) # config for python scripts
    # config for cudnn
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.enabled = False
def env_agent_config(cfg):
    env = gym.make(cfg.env_id) # 创建单个环境
    ## 创建多个并行环境
    envs = [make_envs(cfg.env_id) for i in range(cfg.n_envs)]
    envs = SubprocVecEnv(envs) 
    all_seed(seed=cfg.seed) # 设置随机种子
    state_dim = env.observation_space.shape[0] # 获取网络输入维度
    action_dim = env.action_space.n # 获取策略网络输出维度
    print(f"状态空间维度:{state_dim},动作空间维度:{action_dim}")
    setattr(cfg,"state_dim",state_dim) # 更新state_dim到cfg参数中
    setattr(cfg,"action_dim",action_dim) # 更新action_dim到cfg参数中
    agent = A3C(cfg) # 创建agent实例
    return env, envs, agent

训练

在A3C的训练过程中,通过n_envs定义多个环境,构建多个工作进程,所有的工作进程都会在每个相同的时间步上进行环境交互,经过n_steps步的交互之后,将经验收集后一起计算梯度进行模型更新。需要注意的是,这里在多进程的构建上采用的是同步更新的方法,即在每个时间步上使用的是相同的模型和策略进行交互。

def train(cfg, env, envs, agent):
    ''' 训练
    '''
    print("开始训练!")
    rewards = []  # 记录所有回合的奖励
    steps = [] # 记录所有回合的步数
    sample_count = 0 # 记录智能体总共走的步数
    state, info = envs.reset()  # 重置环境,返回初始状态 
    for i_ep in range(cfg.train_eps):
        ep_reward = 0  # 记录一条轨迹内的奖励
        entropy = 0 # 记录一条轨迹内的交叉熵损失
        for _ in range(cfg.n_steps):
            dist, value, action = agent.sample_action(state)  # 动作采样
            sample_count += 1
            next_state, reward, terminated, truncated , info = envs.step(action.detach().cpu().numpy())  # 更新环境,返回transition
            log_prob = dist.log_prob(action)
            entropy += dist.entropy().mean()
            reward = torch.tensor(reward, dtype = torch.float32).unsqueeze(1).to(cfg.device)
            mask = torch.tensor(1-terminated, dtype = torch.float32).unsqueeze(1).to(cfg.device)
            agent.memory.push((log_prob,value,reward,mask)) # 将transition存储到缓冲区中
            state = next_state  # 更新状态
        agent.update(next_state, entropy) # 更新网络参数
        if sample_count % 200 == 0:
            ep_reward = np.mean([evaluate_env(cfg, env, agent) for _ in range(10)])
            print(f"步数:{sample_count}/{cfg.train_eps*cfg.n_steps},奖励:{ep_reward:.2f}")
            rewards.append(ep_reward)         
    print("完成训练!")
    envs.close()
    return {'rewards':rewards}
def evaluate_env(cfg, env, agent, vis=False):
    state, info = env.reset()
    if vis: env.render()
    terminated = False
    total_reward = 0
    for _ in range(cfg.max_steps):
        state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device)
        action = agent.predict_action(state)
        next_state, reward, terminated, truncated, _ = env.step(action[0])
        state = next_state
        if vis: env.render()
        total_reward += reward
        if terminated:
            break
    return total_reward
def test(cfg, env, agent):
    print("开始测试!")
    rewards = []  # 记录所有回合的奖励
    steps = [] # 记录所有回合的步数
    for i_ep in range(cfg.test_eps):
        ep_reward = 0  # 记录一回合内的奖励
        ep_step = 0 # 记录一回合智能体一共走的步数
        state, info = env.reset(seed = cfg.seed)  # 重置环境,返回初始状态
        for _ in range(cfg.max_steps):
            ep_step+=1
            state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device) 
            action = agent.predict_action(state)  # 选择动作
            next_state, reward, terminated, truncated , info = env.step(action[0])  # 更新环境,返回transition
            state = next_state  # 更新下一个状态
            ep_reward += reward  # 累加奖励
            if terminated:
                break
        steps.append(ep_step)
        rewards.append(ep_reward)
        print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}")
    print("完成测试")
    env.close()
    return {'rewards':rewards}

设置参数

class Config:
    def __init__(self) -> None:
        self.algo_name = 'A3C' # 算法名称
        self.env_id = 'CartPole-v1' # 环境id
        self.seed = 1 # 随机种子,便于复现,0表示不设置
        self.train_eps = 4000 # 训练的总步数
        self.test_eps = 200 # 测试的总回合数
        self.n_steps = 5 # 更新策略的轨迹长度
        self.max_steps = 200 # 测试时一个回合中能走的最大步数
        self.gamma = 0.99 # 折扣因子
        self.lr= 1e-3 # 网络学习率
        self.critic_loss_coef = 0.5 # 值函数系数值
        self.entropy_coef = 0.001 # 策略熵系数值
        self.hidden_dim = 256 # 网络的隐藏层维度
        self.n_envs = 8 # 并行的环境个数
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
        
def smooth(data, weight=0.9):  
    '''用于平滑曲线,类似于Tensorboard中的smooth曲线
    '''
    last = data[0] 
    smoothed = []
    for point in data:
        smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值
        smoothed.append(smoothed_val)                    
        last = smoothed_val                                
    return smoothed

def plot_rewards(rewards,cfg, tag='train'):
    ''' 画图
    '''
    sns.set()
    plt.figure()  # 创建一个图形实例,方便同时多画几个图
    plt.title(f"{tag}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_id}")
    plt.xlabel('epsiodes')
    plt.plot(rewards, label='rewards')
    plt.plot(smooth(rewards), label='smoothed')
    plt.legend()
    plt.show()

开始训练

# 获取参数
cfg = Config() 
# 训练
env, envs, agent = env_agent_config(cfg)
res_dic = train(cfg, env, envs, agent)
plot_rewards(res_dic['rewards'], cfg, tag="train")  
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test")  # 画出结果

在这里插入图片描述
查看GPU运行状况发现确实是采用了多个进程。

利用JoyRL实现多进程

JoyRL 支持多进程模式,但与矢量化环境不同,JoyRL 的多进程模式可以同时运行多个交互器和学习者。这样做的好处是,如果一个交互者或学习者失败,它不会影响其他交互者或学习者的运行,从而提高训练的稳定性。在 JoyRL 中,多进程模式可以通过将 n _ intertorsn _ learning 设置为大于1的整数来启动,如下所示:

n_interactors: 2
n_learners: 2

请注意,多学习者模式还不支持,即 n _ learning 必须设置为1,多学习者模式将在未来得到支持。

练习

  1. 相比于 REINFORCE \text{REINFORCE} REINFORCE 算法, A2C \text{A2C} A2C 主要的改进点在哪里,为什么能提高速度?
  • 改进点主要有:优势估计:可以更好地区分好的动作和坏的动作,同时减小优化中的方差,从而提高了梯度的精确性,使得策略更新更有效率
  • 使用 Critic \text{Critic} Critic REINFORCE \text{REINFORCE} REINFORCE 通常只使用 Actor \text{Actor} Actor 网络,没有 Critic \text{Critic} Critic 来辅助估计动作的价值,效率更低
  • 并行化:即 A3C \text{A3C} A3C ,允许在不同的环境中并行运行多个 Agent \text{Agent} Agent,每个 Agent \text{Agent} Agent 收集数据并进行策略更新,这样训练速度也会更快。
  1. A2C \text{A2C} A2C 算法是 on-policy \text{on-policy} on-policy 的吗?为什么?

A2C \text{A2C} A2C 在原理上是一个 on-policy \text{on-policy} on-policy算法,首先它使用当前策略的样本数据来更新策略,然后它的优势估计也依赖于当前策略的动作价值估计,并且使用的也是策略梯度方法进行更新,因此是 on-policy \text{on-policy} on-policy 的。但它可以被扩展为支持 off-policy \text{off-policy} off-policy学习,比如引入经验回放,但注意这可能需要更多的调整,以确保算法的稳定性和性能。

总结

本文首先从蒙特卡洛策略梯度算法和基于价值的DQN族算法的缺陷进行切入,引出了Actor-Critic 算法。该算法主要是对Critic 部分进行了改进,在Q Actor-Critic 算法提出的通用框架下,引入一个优势函数,即A2C算法。原先的 A2C算法相当于只有一个全局网络并持续与环境交互更新,而A3C算法中增加了多个进程,使每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,提高了训练效率。之后介绍了广义优势估计着一种通用的模块,它在实践中可以用在任何需要估计优势函数的地方。最后对A2C算法进行了实现,并介绍了JoyRL包实现多进程的方法。

  • 16
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
A2C(Advantage Actor-Critic)算法是一种常用的强化学习算法,旨在通过同时训练一个策略网络(Actor)和一个价值网络(Critic)来实现优化。 在A2C算法中,Actor网络用于学习动作策略,而Critic网络用于评估状态的价值。Actor网络根据当前状态选择一个动作,并生成一个策略分布。Critic网络根据当前状态估计该状态的价值。这两个网络共同工作,通过优化目标函数来提高策略和价值的准确性。 A2C算法的训练过程可以分为两个步骤:生成样本和更新参数。生成样本时,Actor网络根据当前状态生成动作,并与环境进行交互,得到下一个状态和奖励。然后,使用这些样本计算出优势函数,即当前状态的动作价值与预期价值之间的差异。 更新参数时,使用生成的样本来计算Actor和Critic网络的损失函数。Actor损失函数一般使用策略梯度方法,通过最大化优势函数来更新策略网络的参数。Critic损失函数一般使用均方误差损失,通过最小化实际价值与预期价值之间的差异来更新价值网络的参数。这两个网络的参数可以使用梯度下降法进行更新。 与A3C(Asynchronous Advantage Actor-Critic)算法不同,A2C算法是一种1-step方法,即每次更新只考虑当前的状态和动作。而A3C算法是一种n-step方法,考虑了未来多个状态和动作的影响。因此,A3C相比于A2C在更新参数的方式上有所不同,但都是基于Actor-Critic的思想。 总结来说,A2C算法是一种结合了Actor和Critic网络的强化学习算法,通过不断生成样本和更新网络参数来提高策略和价值的准确性。它是一种1-step方法,与A3C算法相比,在更新参数的方式上有所不同。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [强化学习算法:AC系列详解](https://blog.csdn.net/qq_29176963/article/details/104975905)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卡拉比丘流形

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值