安装Pytorch过程

按了好几遍,终于成功了,下面是过程,记录一下,说不定后边还会用到。

        此处只介绍anaconda环境以及GPU安装,若自己电脑没有英伟达显卡,可以换教程了,怎么看自己是否有英伟达显卡,见步骤1。

右上角的就是表示你有

1、查看自己电脑是不是有英伟达显卡

电脑搜索栏搜索设备管理器-->显示适配器-->NVIDIA GeForce GTX 1650

如果没有NVIDIA开头的东西,那就是没有英伟达显卡,可以换教程了

接下来开始安装pytorch:

win+R,输入CMD,打开命令行输入

nvidia-smi

如果输入上述命令后不显示显卡版本号,更新一下驱动。

NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA        点击前方链接进入更新驱动界面

在更新驱动的官网,手动搜索驱动程序,产品系列见设备管理器的显卡型号

搜索后,出来下面的界面:选择新的下载就好,Studio和Game Ready,侧重不同的方面,两者应该都可(我下的Studio)

下载安装完成后,重新打开命令行!!!再输入nvidia-smi,就可以出来了。

此处可以看到版本为12.6

2、安装CUDA

CUDA 官网网址:  https://developer.nvidia.com/cuda-toolkit-archive      

从官网下载对应的CUDA版本,由于我的显卡版本为12.6,我只需要安装小于或者等于12.5都是可以的,因此这里我安装12.4。

下载后安装:

注意!!!这只是一个临时存储的位置(不用管这个位置)

安装时这个要选自定义!!

将位置改为自己定义的!后面会用

安装完成后,最开始的临时存储路径将会自动删除2、安装CuDNN(加速器)

官网下载安装包,注意:需要注册登录才能进行安装喔😁

网址:https://developer.nvidia.com/cudnn

选择自己的电脑配置,然后点击下载即可

安装时的第一个界面也是一个临时存储路径(路径不重要,安装完成后会自动删除!!!)

选择自定义安装!

将这五个的位置都改为自己定义的(注意往下滑还有两个所以是五个)

安装完成后,将cudnn安装路径下的bin,include,lib文件夹复制到cuda的安装路径下!

3、安装pytorch-GPU

创建虚拟环境:

打开Anaconda终端

conda create -n pytorch python=3.11

pytorch只是名字而已,可以自己定义,python=3.11是python的版本号遇见了就输y!!

输入conda env list可以查看已经创建的虚拟环境

conda env list

切换到上面创建的虚拟环境,我的是pytorch

conda activate pytorch

这里换为pytorch(自己设的环境名就对了)

添加镜像:

​conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
 
conda config --set show_channel_urls yes
 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
 
​

进入pytorch官网找下载链接

官网网址:PyTorch

这个版本一定要和第一步自己下的CUDA的版本一致!!!!!!!

如果这里边没有,去历史版本里边找

将Run this Command中的命令复制

等待安装完成即可。

4、命令行验证或者pycharm验证

命令行验证:(中间有一行输错了,忽略忽略嘿嘿)

import不报错,显示True表示安装完成

pycharm验证:

新建一个py文件,将下述代码粘过去:

import torch
import torchvision
import torchaudio

print("Torch Version:", torch.__version__)
print("Torchvision Version:", torchvision.__version__)
print("Torchaudio Version:", torchaudio.__version__)


print(torch.__version__) # pytorch版本
print(torch.version.cuda) # cuda版本
print(torch.cuda.is_available()) # 查看cuda是否可用

pytorch和cuda的版本输出为安装的版本。

至此完结撒花!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值