P1609 最小回文数
思路:
- 模拟
具体实现:
- 按照前半段统一,判断是否满足
- 从中间开始 + 1 判断(注意9),是否满足,若不满足,则向两边扩展
- 若都不能 + 1,全 9 的情况,直接输出答案 头尾为1中间为0,长度为原串+1
代码如下:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <bitset>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#define fast ios::sync_with_stdio(false), cin.tie(nullptr); cout.tie(nullptr)
#define rf freopen("D://C.C++//C++_Project//sublime//in.txt", "r", stdin);
#define wf freopen("D://C.C++//C++_Project//sublime//out.txt", "w", stdout);
#define mkpr make_pair
#define endl '\n'
#define x first
#define y second
#define y1 Y1
#define int long long
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int mod = 998244353;
const int INF = 0x3f3f3f3f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-9;
const int N = 1e5 + 10, M = N * 2;
const int YB = 8, YM = 1e8;
const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a/gcd(a,b)*b;}
int T, cases;
int n, m, k, times;
string s;
void solve()
{
cin >> s;
int len = s.size();
int milen = len / 2;
string temp = s;
bool ones = false;
int flag = 1;
if(len & 1)
{
flag = 0;
if(temp[milen] != '9')
{
++ temp[milen];
ones = true;
}
}
for (int i = 1; i <= milen; i ++ )
temp[milen - i] = temp[milen + i - flag] = temp[milen - i];
if(temp > s)
{
cout << temp << endl;
return;
}
if(ones)
{
cout << temp << endl;
return;
}
else
{
int success = -1;
for (int i = 1; i <= milen; i ++ )
{
if(temp[milen - i] != '9')
{
temp[milen - i] = temp[milen + i - flag] = ++ temp[milen - i];
success = i;
ones = true;
break;
}
}
if(success != -1)
{
if(len & 1) temp[milen] = '0';
for (int i = 1; i < success; i ++ )
temp[milen - i] = temp[milen + i - flag] = '0';
}
}
if(ones)
{
cout << temp << endl;
return;
}
else
{
cout << 1;
for (int i = 1; i <= len - 1; i ++ )
cout << 0;
cout << 1 << endl;
}
return;
}
signed main()
{
//rf;wf;
T = 1;
fast;
//cin >> T;
//scanf("%d", &T);
//for (cases = 1; cases <= T; cases ++ )
while(T -- )
solve();
return 0;
}
P1165 日志分析
思路:
- 栈
具体实现:
- 两个栈,一个维护当前序列的值
- 一个维护,当前序列的最大值
代码如下:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <bitset>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#define fast ios::sync_with_stdio(false), cin.tie(nullptr); cout.tie(nullptr)
#define rf freopen("D://C.C++//C++_Project//sublime//in.txt", "r", stdin);
#define wf freopen("D://C.C++//C++_Project//sublime//out.txt", "w", stdout);
#define mkpr make_pair
#define endl '\n'
#define x first
#define y second
#define y1 Y1
#define int long long
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int mod = 998244353;
const int INF = 0x3f3f3f3f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-9;
const int N = 1e5 + 10, M = N * 2;
const int YB = 8, YM = 1e8;
const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a/gcd(a,b)*b;}
int T, cases;
int n, m, k, times;
stack<int> stk, mx;
void solve()
{
cin >> n;
for (int i = 1; i <= n; i ++ )
{
int op, x;
cin >> op;
if(!op)
{
cin >> x;
stk.push(x);
if(mx.empty() || mx.top() <= x) mx.push(x);
}
else
{
if(op == 1)
{
int x = stk.top();
stk.pop();
if(x == mx.top()) mx.pop();
}
else
{
if(!mx.empty()) cout << mx.top() << endl;
else cout << 0 << endl;
}
}
}
return;
}
signed main()
{
//rf;wf;
T = 1;
fast;
//cin >> T;
//scanf("%d", &T);
//for (cases = 1; cases <= T; cases ++ )
while(T -- )
solve();
return 0;
}
P3718 [AHOI2017初中组]alter
思路:
- 二分答案
具体实现:
- mid 为最短长度,所以每mid段后必须+1,所以 res += w[i] / (mid + 1)
- 特判 长度为 1 (两种情况取最小值)即可
代码如下:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <bitset>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#define fast ios::sync_with_stdio(false), cin.tie(nullptr); cout.tie(nullptr)
#define rf freopen("D://C.C++//C++_Project//sublime//in.txt", "r", stdin);
#define wf freopen("D://C.C++//C++_Project//sublime//out.txt", "w", stdout);
#define mkpr make_pair
#define endl '\n'
#define x first
#define y second
#define y1 Y1
#define int long long
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int mod = 998244353;
const int INF = 0x3f3f3f3f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-9;
const int N = 1e5 + 10, M = N * 2;
const int YB = 8, YM = 1e8;
const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a/gcd(a,b)*b;}
int T, cases;
int n, m, k, times;
int w[N];
vector<int> v;
bool check(int mid)
{
int cnt = 0;
for (int i = 0; i < v.size(); i ++ )
{
if(v[i] > mid)
cnt += v[i] / (mid + 1);
}
return cnt <= m;
}
void solve()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++ )
{
char ch;
cin >> ch;
if(ch == 'N') w[i] = 1;
else w[i] = 0;
}
int last = w[1], cnt = 1;
for (int i = 2; i <= n; i ++ )
{
if(w[i] != last)
{
v.push_back(cnt);
last = w[i];
cnt = 1;
}
else cnt ++;
}
if(cnt) v.push_back(cnt);
int cnt1 = 0;
last = 1;
for (int i = 2; i <= n; i ++ )
{
if(w[i] != last) cnt1 ++;
last ^= 1;
}
int cnt2 = 0;
last = 0;
for (int i = 2; i <= n; i ++ )
{
if(w[i] != last) cnt2 ++;
last ^= 1;
}
if(min(cnt1, cnt2) <= m)
{
cout << 1 << endl;
return;
}
int l = 2, r = n;
while(l < r)
{
int mid = l + r >> 1;
if(check(mid)) r = mid;
else l = mid + 1;
}
cout << r << endl;
return;
}
signed main()
{
//rf;wf;
T = 1;
fast;
//cin >> T;
//scanf("%d", &T);
//for (cases = 1; cases <= T; cases ++ )
while(T -- )
solve();
return 0;
}
P1637 三元上升子序列
思路:
- 树状数组
具体实现:
- 树状数组维护给数前面后面的数
代码如下:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <bitset>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#define fast ios::sync_with_stdio(false), cin.tie(nullptr); cout.tie(nullptr)
#define rf freopen("D://C.C++//C++_Project//sublime//in.txt", "r", stdin);
#define wf freopen("D://C.C++//C++_Project//sublime//out.txt", "w", stdout);
#define mkpr make_pair
#define endl '\n'
#define x first
#define y second
#define y1 Y1
#define int long long
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int mod = 998244353;
const int INF = 0x3f3f3f3f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-9;
const int N = 1e5 + 10, M = N * 2;
const int YB = 8, YM = 1e8;
const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a/gcd(a,b)*b;}
int T, cases;
int n, m, k, times;
int w[N];
int l[N], r[N];
int tr[N];
int lowbit(int x)
{
return x & -x;
}
void add(int x, int r)
{
for (int i = x; i <= N; i += lowbit(i)) tr[i] += r;
}
int sum(int x)
{
int res = 0;
for (int i = x; i; i -= lowbit(i)) res += tr[i];
return res;
}
void solve()
{
cin >> n;
for (int i = 1; i <= n; i ++ )
cin >> w[i];
memset(tr, 0, sizeof tr);
for (int i = 1; i <= n; i ++ )
{
int x = w[i];
l[i] = sum(x - 1);
add(w[i], 1);
}
memset(tr, 0, sizeof tr);
for (int i = n; i >= 1; i -- )
{
int x = w[i];
r[i] = sum(N) - sum(x);
add(w[i], 1);
}
int res = 0;
for (int i = 1; i <= n; i ++ )
res += l[i] * r[i];
cout << res << endl;
return;
}
signed main()
{
//rf;wf;
T = 1;
fast;
//cin >> T;
//scanf("%d", &T);
//for (cases = 1; cases <= T; cases ++ )
while(T -- )
solve();
return 0;
}
P1799 数列
思路:
- 线性DP
具体实现:
- 见代码注释
代码如下:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <bitset>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#define fast ios::sync_with_stdio(false), cin.tie(nullptr); cout.tie(nullptr)
#define rf freopen("D://C.C++//C++_Project//sublime//in.txt", "r", stdin);
#define wf freopen("D://C.C++//C++_Project//sublime//out.txt", "w", stdout);
#define mkpr make_pair
#define endl '\n'
#define x first
#define y second
#define y1 Y1
#define int long long
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int mod = 998244353;
const int INF = 0x3f3f3f3f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-9;
const int N = 1010, M = 1010;
const int YB = 8, YM = 1e8;
const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a/gcd(a,b)*b;}
int T, cases;
int n, m, k, times;
int w[N];
int f[N][N];
// 状态表示:
// 集合:所有前i个数字中,已经用了j次删除的方案,含义为:所得的匹配数
// 属性:Max
// 状态计算:(考虑最后一步
// 若删除,f[i][j] = f[i - 1][j - 1]
// 若不删除i,f[i][j] = f[i - 1][j] + (a[i] == i - j);
void solve()
{
cin >> n;
for (int i = 1; i <= n; i ++ )
cin >> w[i];
for (int i = 1; i <= n; i ++ )
for (int j = 0; j <= n; j ++ )
{
f[i][j] = max(f[i][j], f[i - 1][j] + (w[i] == i - j));
if(j > 0) f[i][j] = max(f[i][j], f[i - 1][j - 1]);
}
int res = 0;
for (int i = 0; i <= n; i ++ )
res = max(res, f[n][i]);
cout << res << endl;
return;
}
signed main()
{
//rf;wf;
T = 1;
fast;
//cin >> T;
//scanf("%d", &T);
//for (cases = 1; cases <= T; cases ++ )
while(T -- )
solve();
return 0;
}