基于EEG的癫痫检测概述——癫痫数据集、特征提取、分类

目录

一、背景介绍

1.1 EEG基本原理

1.2 EEG的波形与频率

1.3 癫痫阶段

1.4 核心问题

二、癫痫自动检测的整体框架

2.1 信号采集

2.2 数据预处理

2.3 特征提取

2.4 分类模型学习与评估

三、特征提取

3.1 时域特征

3.2 频域特征

3.3 时频特征

3.4 非线性特征

四、分类模型

4.1 分类模型学习

4.2 分类模型评估

4.3 模型选择与优化

参考文献


一、背景介绍

癫痫(Epilepsy)是一种由脑部神经元异常同步电活动引起的慢性疾病,是全球最常见的神经系统疾病之一。脑电图(Electroenc ephalo gram, EEG)是指通过电极从头皮上测量和记录大脑神经元活动产生的电信号。EEG技术已有超过70年的历史,是研究和监测大脑活动的最常用且非侵入性的手段之一,广泛用于神经科学、医学诊断和脑机接口等领域。

1.1 EEG基本原理

EEG信号的产生源于大脑皮层下方神经元的同步电活动。当大脑的神经元群体在传递信号时,会产生微小的电位波动,这些波动可以通过放置在头皮上的电极捕捉到。EEG通常记录从数百到上千个神经元的集体活动,这些活动以微伏(μV)级的电压变化表现。

基于EEG的癫痫自动检测是指通过数据分析方法(如机器学习、时频分析等),自动识别癫痫发作阶段的EEG信号。这一技术可以帮助医生减轻工作负担,提高诊断和治疗效率。

1.2 EEG的波形与频率

EEG信号主要反映不同频率的电波,这些频率与大脑的不同状态和活动相关联:

  • Delta波(0.5-4 Hz):通常在深度睡眠时出现,也与一些病理状态相关。
  • Theta波(4-8 Hz):与轻度睡眠、深度冥想或放松状态相关。
  • Alpha波(8-13 Hz):通常在安静、放松但清醒的状态下出现,常见于闭眼状态。
  • Beta波(13-30 Hz):与警觉、专注、思维活动和压力相关。
  • Gamma波(30 Hz以上):与高级认知功能,如意识、记忆处理和信息整合相关。

1.3 癫痫阶段

癫痫通常划分为四个阶段

(1)发作前期(Preictal)

癫痫发作前的阶段。这一阶段患者可能会经历某些感觉或情绪上的变化,通常持续几秒到几分钟。

(2)发作期(Ictal)

发作期是癫痫发作的核心阶段,通常持续几秒到几分钟,具体取决于发作类型。

(3)恢复期(Postical)

癫痫发作结束后立即发生的时期,持续时间从几分钟到数小时不等。

(4)发作间期(Interictal)

是指两次癫痫发作之间的时期,即患者没有癫痫发作的时间段,这个过程时间最长。

1.4 核心问题

癫痫检测的核心问题可以归纳为特征提取分类器的设计。传统的特征提取常常从时域、频域以及时频域着手,而深度学习通过神经网络将特征提取与分类器结合。

二、癫痫自动检测的整体框架

癫痫检测通常包括四个主要步骤:

  • 信号采集
  • 数据预处理
  • 特征提取
  • 分类学习与评估

2.1 信号采集

采集方式

从采集方式来看EEG可分为颅内EEG(iEEG)头皮EEG(sEEG)。颅内EEG需要通过手术将电极直接植入颅内,放置在大脑皮层表面或皮层内部。这种方式可以更直接地记录神经元的电活动,因此具有更高的信号质量和空间分辨率。头皮EEG是将电极放置在头皮上,通过导线连接到EEG设备来记录大脑皮层的电活动,这种方式无创安全,因此头皮EEG是最常用的脑电监测手段

颅内EEG和头皮EEG对比
特点颅内EEG头皮EEG
是否侵入侵入性,需手术非侵入性,安全无创
信号质量信号质量高,空间分辨率高信号受衰减影响,空间分辨率低
伪迹伪迹干扰少,信噪比高易受肌电、心跳、眨眼等伪迹干扰
适用场景复杂癫痫的诊断及手术前评估广泛应用于临床诊断、研究及日常监测
风险手术风险,可能引发感染、出血等并发症无风险
记录范围可精确记录特定大脑区域,甚至是深层区域的活动记录大脑皮层活动
主要应用难治性癫痫定位、功能区定位、深部脑研究等癫痫监测、睡眠研究、认知研究等

10-20国际标准导联系统

头皮EEG通常采用10-20国际标准导联系统,这是用于在头皮上放置EEG电极的标准化方法。该系统通过确定电极在头皮上的精确位置,确保EEG记录的一致性和可比性。它的名称“10-20”来源于电极间距占头部特定尺寸的10%或20%。患者通常佩戴电极帽,通过在电极传感器与头皮之间注入某种电解质就可以进行电信号的传导。

电极标记:电极位置通过字母和数字标记。字母表示大脑不同的区域,数字表示电极的左右位置。偶数数字(如2、4)代表右侧,奇数数字(如1、3)代表左侧,标记“z”表示中线位置

图源:10/20 System Electrode Distances | DIY tDCS

癫痫数据集

目前,一部分研究数据来自于医院的非公开数据,大部分则来源于公开数据集,常见的公开癫痫数据集有:CHB-MIT数据集Bonn数据集TUSZ数据集、Barcelona数据集和Freiburg数据集等。

2.2 数据预处理

原始EEG信号幅值较小,采集过程易受50Hz的工频信号干扰,同时伪迹和肢体运动的存在使得EEG信号往往无法直接使用,因此需要进行预处理。预处理的操作可以从以下几点入手:

(1)伪迹去除(Artifact Removal)

伪迹是EEG信号中常见的干扰信号,通常来自肌电(EMG)、眼电(EOG)、心电(ECG)、电极移动或环境噪声等。常见的去伪迹方法包括:

  • 视觉检查与手动去伪迹:通过可视化EEG信号,手动标记并删除伪迹区段。
  • 独立成分分析(ICA):分解EEG信号为独立成分,然后识别和移除与伪迹相关的成分。
  • 主成分分析(PCA):通过降维分解信号,去除主要伪迹成分。

(2)滤波(Filtering)

滤波用于去除特定频段的噪声信号,例如电源线噪声和生理伪迹。常见的滤波类型包括:

  • 高通滤波(High-pass filtering):用于去除低频干扰(如肌电噪声),常设定在0.5 Hz到1 Hz之间。
  • 低通滤波(Low-pass filtering):用于去除高频噪声(如50/60 Hz电源干扰和肌肉活动),常设定在30 Hz到100 Hz之间。
  • 带通滤波(Band-pass filtering)最为常用用于保留特定频率范围的信号,例如1 Hz~50 Hz范围的脑电活动。
  • 陷波滤波(Notch filtering):用于去除50 Hz或60 Hz的工频噪声。

(3)基线漂移校正(Baseline Drift Correction)

基线漂移是由呼吸、头部移动等因素引起的低频变化,通常通过高通滤波或多项式拟合等方法去除漂移,保证信号的稳定性。

(4)重参考(Re-referencing)

EEG信号通常是相对参考电极记录的,需要重新参考以减少噪声并改善信号质量。常见的参考方法包括:

  • 公共平均参考:将所有电极信号的平均值作为参考信号。
  • 双耳参考:以左右耳电极的平均值作为参考点。
  • 自定义参考:根据实验需求选择特定的参考电极。

(5)分段与去噪(Segmentation and Denoising)

为了便于分析,EEG数据通常会根据实验设计或时间窗口分割成小段。去噪方法如小波变换、卡尔曼滤波等可以进一步清理信号中的随机噪声。

(6)信号标准化(Normalization)

标准化是对EEG信号进行幅值调整,消除不同个体或实验之间的幅值差异,使得信号在不同实验条件下具有一致的尺度。常见的方法包括z-score标准化或最大最小值归一化。

(7)下采样(Downsampling)

如果EEG信号的采样率过高(如1024 Hz),可能会包含不必要的冗余信息。通过下采样可以减少数据量,同时保留信号的主要信息。例如,将采样率从1024 Hz降至256 Hz可以减少处理负担。

(8)事件相关信号提取(Epoch Extraction)

在实验中,EEG信号通常与外部事件(如视觉、听觉刺激)相关。通过标记事件,提取相应的时间窗口(Epoch),可用于分析特定事件下的脑电活动。

(9)功率谱密度计算(Power Spectral Density, PSD)

通过傅里叶变换或小波变换计算EEG信号的功率谱密度,分析信号在不同频段(如Delta、Theta、Alpha、Beta)的能量分布,用于后续的特征提取。

(10)通道选择(Channel Selection)

根据实验需求和信号质量,选择特定的电极通道进行分析。例如,去除噪声较大的电极通道或选择与目标区域相关的通道。

2.3 特征提取

特征提取是指通过分析EEG信号,获取能够有效描述信号状态或分类任务的数值特征。这些特征可以来自时域、频域、时频域或非线性分析。提取的特征能够最有效地代表整个信号,并且其好坏直接影响最终的分类性能。 

用于癫痫检测的特征一般可分为四类:针对序列波形及其互相关性等的时域特征、以功率谱密度为代表的对能量信号等分析的频域特征、应对EEG信号非平稳特性而转换的时频域特征,以及能够捕捉复杂模式的非线性特征

2.4 分类模型学习与评估

根据癫痫的脑电特征,选择合适的分类模型进行学习和评估是癫痫自动检测的核心环节。常见的分类模型可以根据分类判断依据分为统计分析模型机器学习模型两大类。

对于统计分析模型,除了通过直接设定信号特征的阈值来判断发作状态,还包括分布检验、相关性分析等方法。通过形态学分析、时频分析等技术,比较待测信号与模板癫痫发作信号在特征数量、分布和相关性上的差异,从而实现癫痫的自动检测。

随着人工智能的发展,机器学习模型在癫痫自动检测中的应用越来越广泛。这些模型包括传统的基于手工提取特征的机器学习方法、基于神经网络的深度学习模型、用于解决个体差异的迁移学习、融合多个特征视图的多视图学习、整合多个基分类器的集成学习,以及优化标注样本的主动学习等。

三、特征提取

3.1 时域特征

时域特征是EEG信号处理中最基础的特征,主要通过直接观察和计算原始信号来提取相应信息。其优势在于计算简单,便于研究者直观理解。然而,由于EEG信号本身的非平稳性、个体差异以及外界干扰,时域特征容易受到这些因素的影响。常见的时域特征包括:

  • 均值(Mean):信号的平均值,反映信号的整体趋势。
  • 标准差(Standard Deviation):衡量信号波动的幅度。
  • 峰度(Kurtosis):衡量信号分布的尖锐程度,峰度高表示尖刺现象较多。
  • 偏度(Skewness):描述信号分布的对称性。
  • 零交叉率(Zero Crossing Rate):信号穿过零点的次数,反映频率信息。
  • 均方根(Root Mean Square, RMS):反映信号的整体能量。

3.2 频域特征

频域特征基于癫痫发作时EEG信号能量的显著变化,但假设背景EEG信号是近似平稳的。大部分频域特征源于对信号功率谱的研究,不同的参数估计方法可用于提取谱特征,参数的准确性直接影响频域特征的质量。常见的频域特征包括:

  • 功率谱密度(Power Spectral Density, PSD):通过快速傅里叶变换(FFT)计算信号在各个频率上的功率分布,反映不同频段(Delta、Theta、Alpha、Beta、Gamma)的能量。
  • 主频率(Dominant Frequency):信号中功率最大的频率成分。
  • 频谱熵(Spectral Entropy):衡量信号频谱的复杂度或不确定性。

3.3 时频特征

时频特征则通过结合时域和频域信息来解决单纯时域或频域特征的局限性。由于EEG信号的非平稳特性,基于平稳性假设的分析方法并不严谨,因此研究者引入了时频分析方法,通过时频变换重新表示信号并提取相关特征。常见的时频特征包括:

  • 短时傅里叶变换(Short-Time Fourier Transform, STFT):对信号进行时间窗口化处理,并在每个时间窗口内计算频率成分。
  • 小波变换(Wavelet Transform):将信号分解为不同尺度的小波系数,能够捕捉信号的局部特征。小波系数的均值、方差、能量等可作为特征。
  • 离散小波变换(Discrete Wavelet Transform, DWT):通过分解信号为一系列子带,提取不同频段的信息。

3.4 非线性特征

非线性特征随着神经科学的发展,许多研究将大脑视为一个非线性系统,分析其复杂度、持久性和同步性变化。这类特征不受EEG信号非平稳性的影响,在处理多通道关联和通道缺失等问题时也更加灵活。常见的非线性特征包括:

  • 近似熵(Approximate Entropy, ApEn):衡量信号的复杂度,熵值越高表示信号越复杂。
  • 样本熵(Sample Entropy, SampEn):与近似熵类似,反映信号的混乱程度。
  • Hurst指数(Hurst Exponent):用于描述时间序列的自相似性。
  • 最大Lyapunov指数(Lyapunov Exponent):反映系统的混沌特性,用于衡量系统对初始条件的敏感性。

四、分类模型

4.1 分类模型学习

(1)统计分析模型

统计分析模型是基于信号特征的统计性质,通过分析特征值之间的关系来判断信号类别。常见的统计分析方法包括:

  • 阈值检测:通过设定预定义的阈值,判断某一特征是否超出正常范围,进而检测异常事件,如癫痫发作。该方法简单高效,适用于特征明显且易分离的信号。
  • 分布检验:通过比较EEG信号的统计分布(如均值、方差)来判断信号是否符合特定病理状态。常见的方法有t检验、卡方检验等。
  • 相关性分析:对EEG信号的不同特征进行相关性检验,判断特征间的线性或非线性相关性。相关性分析可用于多通道信号的研究。

统计分析模型的优势在于计算简单,易于实现和解释,尤其适用于实时性要求高的应用。但由于EEG信号的复杂性和非线性,统计分析模型在处理复杂信号时表现有限,难以捕捉更深层次的特征。

(2)传统机器学习模型

传统机器学习模型通过从标注数据中学习规则,对新数据进行分类。常见的传统机器学习方法包括:

  • 支持向量机(SVM):SVM通过寻找一个最优的超平面,将不同类别的信号分离。对于癫痫自动检测,SVM常用于手工提取的特征分类,适合处理高维数据。
  • 线性判别分析(LDA):LDA通过最大化类间方差与类内方差的比值,寻找一个线性判别函数来区分不同类别。LDA适合实时应用,计算复杂度较低。
  • 随机森林(Random Forest):随机森林通过构建多棵决策树,集成每棵树的分类结果。它对噪声和特征维数不敏感,适用于大规模数据集。

传统机器学习模型的优点是理论成熟、实现简单,且在小规模数据集上表现较好。但其局限性在于依赖手工提取特征,难以捕捉复杂的信号特征。

(3)深度学习

深度学习模型近年来在癫痫自动检测中得到了广泛应用,尤其是处理复杂、高维的EEG信号数据。深度学习能够自动从原始信号中提取高阶特征,减少对手工特征的依赖。常见的深度学习方法包括:

  • 卷积神经网络(CNN):CNN通过卷积层从EEG信号中提取空间和时间信息,适合处理EEG的多通道数据。CNN特别适用于二维的时频图或频谱图的特征提取。
  • 循环神经网络(RNN)及其变种(LSTM、GRU):RNN适用于处理序列数据,能够捕捉信号中的时间依赖性。LSTM和GRU通过引入记忆机制,解决了普通RNN中梯度消失的问题,适合长时间序列的EEG数据。
  • 自编码器(Autoencoder, AE):自编码器通过无监督学习将高维信号压缩为低维表示,常用于EEG数据的降维和特征提取。

深度学习模型能够自动学习复杂的特征,并且适用于大规模数据集。然而,这些模型需要大量标注数据进行训练,且计算资源消耗较大。

(4)迁移学习

迁移学习旨在将从一个任务或数据集上学到的知识迁移到另一个相似任务上。对于EEG信号的癫痫检测,迁移学习可以克服不同个体之间的差异问题:

  • 个体差异的迁移:不同个体的EEG信号差异较大,通过迁移学习,可以利用一个受试者的模型知识,帮助另一个受试者的模型进行分类。
  • 跨域学习:迁移学习还可应用于不同实验环境、设备和任务之间的知识迁移,提升模型的泛化能力。

迁移学习在数据不足和个体差异较大的情况下表现尤为出色,然而如何有效选择迁移的特征和知识仍然是一个挑战。

(5)多视图学习

多视图学习通过融合来自不同特征空间或视角的信息,提升分类性能。在癫痫检测中,EEG信号可以通过不同的特征空间(如时域、频域、时频域)进行分析:

  • 不同特征融合:多视图学习能够将时域特征、频域特征、时频特征等信息进行融合,从多个角度进行信号分类。
  • 多通道融合:EEG信号往往来自多个电极通道,利用多视图学习方法,可以对不同通道的数据进行联合建模,提升检测的鲁棒性。

多视图学习的优势在于它能够结合多种特征,提高模型的分类能力,但其复杂性也随之增加。

(6)集成学习

集成学习通过结合多个基分类器的预测结果,提升整体分类性能。集成学习方法在EEG信号的癫痫检测中表现优异,常见的集成学习方法包括:

  • Bagging:如随机森林,通过构建多个基分类器并将其结果投票表决来提升分类性能。它能够降低模型的方差,减少过拟合风险。
  • Boosting:如梯度提升树(Gradient Boosting Machine, GBM),通过调整每个基分类器的权重,逐步提升分类精度。Boosting方法对噪声具有较强的鲁棒性,适用于癫痫发作的检测。

集成学习能够显著提高分类的准确率和稳定性,但模型的训练和推理速度较慢,需要较高的计算资源。

(7)主动学习

主动学习是一种能够有效优化标注样本的学习方法,尤其适用于标注代价高的数据集,如EEG数据。在癫痫检测中,主动学习能够通过选择最具代表性的样本,减少标注需求:

  • 不确定性采样:模型主动选择那些它认为最难分类的样本进行标注,从而提高分类精度。
  • 查询分布采样:根据样本的分布情况,主动选择那些能够最大化模型学习效果的样本进行标注。

主动学习能够在标注样本不足的情况下提升模型性能,但其效果依赖于选择合适的样本采样策略。

4.2 分类模型评估

分类模型的评估是衡量模型在测试数据上表现的重要步骤。通过评估,能够了解模型的分类准确性、稳健性以及泛化能力。常用的评估指标和方法包括:

(1)评估指标

  • 准确率(Accuracy)

        准确率是分类正确的样本占总样本的比例。虽然准确率是一个简单易用的指标,但在类别不平衡的情况下可能会产生偏差。

Accuracy=\frac{TP+TN}{TP+TN+FP+FN}

        其中,TP为真正例,TN为真负例,FP为假正例,FN为假负例。

  • 灵敏度/召回率(Sensitivity/Recall)

        灵敏度(或召回率)是模型正确识别正类样本的比例,反映了模型对目标类别(如癫痫发作)的识别能力。

Sensitivity=\frac{TP}{TP + FN}

  • 特异度(Specificity)

        特异度是模型正确识别负类样本的比例,衡量模型对负类的识别能力。

Specificity=\frac{TN}{TN + FP}

  • 精确率(Precision)

        精确率衡量模型预测为正类的样本中有多少是正确的,反映了预测的可靠性。

Precision=\frac{TP}{TP + FP}

  • F1分数(F1 Score)

        F1分数是精确率和召回率的调和平均,用于在精确率和召回率之间取得平衡。

F1= 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}

  • ROC曲线和AUC(Area Under Curve)

        ROC曲线显示了模型的假阳率(False Positive Rate, FPR)与真阳率(True Positive Rate, TPR)之间的关系,AUC则是ROC曲线下面积,用来衡量分类器的总体性能。

(2)交叉验证(Cross-Validation)

交叉验证是一种常用的模型评估方法,特别是在数据量较少时。通过将数据集分成若干折(通常为k折),轮流将其中一折作为测试集,其余折作为训练集,计算每次的评估结果并取平均值。常见的交叉验证方法有:

  • k折交叉验证(k-Fold Cross-Validation):将数据集分成k份,循环使用每一份作为测试集,最终取k次测试的平均结果。
  • 留一法交叉验证(Leave-One-Out Cross-Validation, LOOCV):每次只留出一个样本作为测试集,剩下的样本作为训练集。

(3)混淆矩阵(Confusion Matrix)

混淆矩阵展示了分类模型在测试集上的分类结果,以便于分析模型的表现。矩阵的每一行表示真实标签,每一列表示预测标签,包含以下四类值:

  • TP(True Positive):模型将正类样本预测为正类。
  • TN(True Negative):模型将负类样本预测为负类。
  • FP(False Positive):模型将负类样本错误预测为正类(假阳性)。
  • FN(False Negative):模型将正类样本错误预测为负类(假阴性)。

4.3 模型选择与优化

  • 超参数调优:许多分类模型包含超参数(如SVM的惩罚参数C,随机森林的决策树数目),可以通过网格搜索(Grid Search)或随机搜索(Random Search)等方法进行超参数优化,寻找最优组合。
  • 正则化:为防止过拟合,可以在模型中加入L1或L2正则化项,控制模型的复杂度。
  • 特征选择:通过特征选择技术,去除冗余或无关特征,提高模型的泛化能力和效率。

参考文献

[1] 彭睿旻,  江军,  匡光涛,  杜浩,  伍冬睿,  邵剑波.  基于EEG的癫痫自动检测: 综述与展望.  自动化学报,  2022,  48(2): 335−350.

[2] Li Y, Liu Y, Guo YZ, Liao XF, Hu B, Yu T. Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction. IEEE Trans Cybern. 2022 Nov;52(11):12189-12204.

[3] Shah V, von Weltin E, Lopez S, McHugh JR, Veloso L, Golmohammadi M, Obeid I, Picone J. The Temple University Hospital Seizure Detection Corpus. Front Neuroinform. 2018 Nov 14;12:83.

[4] Wong S, Simmons A, Rivera-Villicana J, Barnett S, Sivathamboo S, Perucca P, Ge Z, Kwan P, Kuhlmann L, Vasa R, Mouzakis K, O'Brien TJ. EEG datasets for seizure detection and prediction- A review. Epilepsia Open. 2023 Jun;8(2):252-267.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值