目录
第五章 神经网络
0️⃣神经元模型
神经网络是由具有适应性的简单单元组成的广泛并进行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
💡神经网络中最基本的成分:神经元/neuron 模型,即上述“简单单元”。
神经元接收来自 个其他神经元传递过来的输入信号,这些信号通过带权连接/connection 传递,神经元接受到的总输入值将与神经元的阈值进行比较,然后通过“激活函数/activation function”处理产生神经元的输出。
理想中的激活函数时阶跃函数,实际常用 Sigmoid 函数作为激活函数。
💡Sigmoid函数把可能在较大范围内变化的输入值挤压到 输入值范围内,因此也叫“挤压函数/squashing function”
1️⃣感知机与多层网络
感知机/Perceptron 由两层神经元组成,输入层接受外界输入信号后传递给输出层,输出层时M-P神经元