机器学习笔记(四)神经网络

本文详细介绍了神经网络的基础,包括神经元模型、感知机与多层网络,重点讲解了误差逆转传播算法在训练多层网络中的作用,并探讨了全局最小与局部极小的问题。此外,还列举了RBF、ART、SOM等常见神经网络模型,最后提到了深度学习的相关概念。
摘要由CSDN通过智能技术生成

目录

第五章 神经网络

0️⃣神经元模型

1️⃣感知机与多层网络

2️⃣误差逆转传播算法

3️⃣全局最小与局部极小

4️⃣其他常见神经网络

✏️RBF网络

✏️ART网络

✏️SOM网络

✏️级联相关网络

✏️Elman网络

✏️Boltzmann机

5️⃣深度学习


第五章 神经网络

0️⃣神经元模型

        神经网络是由具有适应性的简单单元组成的广泛并进行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

💡神经网络中最基本的成分:神经元/neuron 模型,即上述“简单单元”。

        神经元接收来自 n 个其他神经元传递过来的输入信号,这些信号通过带权连接/connection 传递,神经元接受到的总输入值将与神经元的阈值进行比较,然后通过“激活函数/activation function”处理产生神经元的输出。

        理想中的激活函数时阶跃函数,实际常用 Sigmoid 函数作为激活函数。

💡Sigmoid函数把可能在较大范围内变化的输入值挤压到 \left ( 0,1 \right ) 输入值范围内,因此也叫“挤压函数/squashing function”

1️⃣感知机与多层网络

感知机/Perceptron 由两层神经元组成,输入层接受外界输入信号后传递给输出层,输出层时M-P神经元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LabulaH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值