机器学习笔记(五)支持向量机

目录

第六章 支持向量机

0️⃣间隔与支持向量

1️⃣对偶问题

2️⃣核函数

3️⃣软间隔与正则化

4️⃣支持向量回归

5️⃣核方法

第六章 支持向量机

0️⃣间隔与支持向量

在样本空间中,划分超平面可通过如下线性方程来描述 

w^{T}x + b = 0 

 

具有“最大间隔/maximum margin”的划分超平面就是使得 \gamma 最大。

 

1️⃣对偶问题

 

2️⃣核函数

 

3️⃣软间隔与正则化

具体来说,前面介绍的支持向量机形式是要求所有样本均满足约束(6.3),即所有样本都必须划分正确,这称为“硬间隔/hard margin”,而软间隔则是允许某些样本不满足约束

 

4️⃣支持向量回归

 

5️⃣核方法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LabulaH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值