【AutoDL】【GPU】【租显卡】AutoDL 快速入门

【AutoDL】【GPU】【租显卡】AutoDL 快速入门

说在前面的一些话:自己是2024年5、6月份的时候正式开始用autodl跑了比较多的实验,这个文档一直没有时间写,一是因为感觉csdn上已经有比较多的教程了,二是因为觉得自己用的时间不够久。但是最近发现周围很多同学遇到了如下这些问题或者需求:

  1. 穷,没有钱买GPU
  2. 穷,但是有实验室的服务器,但服务器没有很好的GPU
  3. 不穷,有卡有机器,但想配置环境卡了半天配不好
  4. 环境配好了,但换机器的时候又得重新配一遍,此时忘记自己当时是怎么配的了
  5. 重新配好之后,想跑更多的实验,此时发现实验室的卡已经被占满了
  6. 能跑实验了,但发现服务器空间不够了卡住了,自己又没权限,此时又得找管理员
  7. 跑完实验了,自己终于松口气回宿舍去了,回到宿舍导师发消息说想看看你的实验曲线跑得咋样,但你身边只有一台手机,此时你有点崩溃…

上述问题都可以通过autodl解决。

所以也就有了这个文档,这个文档是记录自己的一些实践经验,可能有些地方不太准确,欢迎大家指正。

Quick Start

下面步骤将一步一步从零配置一个autodl的环境,以便你可以在本地的VSCode中编写代码,然后在远程服务器上运行代码。

  1. 打开https://www.autodl.com,点击控制台

    alt

  2. 点击右侧容器实例 -> 租用新实例

    在这里插入图片描述

  3. 根据自己的需求选择配置,

    1. 选择地区,不同地区的资源是不一样的,自己比较喜欢西北B区的资源,对于更厉害的卡也有对应的专区比如A800专区

    2. 选择GPU型号,RTX 4090D 24GB仅需1.98¥/小时(这是自己所知道的全网最低价格了几乎)

    3. 选择GPU数量,1即可,可以根据需求选择(自己经验供参考:先在少卡的资源上先跑起来的基本的实验或者demo,再在多卡的集群上跑实验,同一个实例是可以在关机后升降配置的)

      在这里插入图片描述

    4. 选择完主机后(要注意空闲GPU那一栏加粗字体是否为0,如果为0该主机就不能选),选择基础镜像,AutoDL官方配置好了很多基础的框架环境(也就俗称的配环境这一步),我们可以在它的基础上定制化自己的环境

    5. 选择对应的框架和版本,点击立即创建

      在这里插入图片描述

  4. 实例创建的过程中可以稍微刷新一下网页,状态会变成运行中,此时就可以复制ssh信息登录了:

    在这里插入图片描述

    可以在terminal(powershell)直接输入下面信息登录(下面是我的真实信息):

    # 登录指令
    ssh -p 31708 root@connect.westb.seetacloud.com
    # 密码
    lSNhlhJcJ/z5
    

    在这里插入图片描述

    进入环境后一般会打印一堆主机环境的信息,输入nvidia-smi可以直接看到显卡的信息,输入python --version查看python版本,conda --version查看conda版本,conda env list查看现有的conda环境

    在这里插入图片描述

    在这里插入图片描述

  5. 使用VSCode Remote SSH 插件连接远程服务器(如果第6点没问题的话这一步肯定可以成功)

    在这里插入图片描述

    打开config后输入下面信息(根据上面访问的命令改的),点击新窗口连接

    Host myAutoDLMachine
        HostName connect.westb.seetacloud.com
        Port 31708
        User root
    

    在这里插入图片描述

    选择远程主机的平台Linux

    在这里插入图片描述

    粘贴服务器的密码

    在这里插入图片描述

    成功连接,之后所有的操作都和VSCode在本地的操作非常类似了。

    在这里插入图片描述

回答开头的问题

IndexQuestionAnswer
1穷,没有钱买GPUAutoDL 可以租用 GPU,按需付费,学生党的福利。(学生有免费会员)
2穷,但是有实验室的服务器,但服务器没有很好的GPUAutoDL 提供各种高性能 GPU 租用服务(一般8xA800目前个人够用了,更大的集群实验觉得不是个人能搞的)
3不穷,有卡有机器,但想配置环境卡了半天配不好AutoDL 也是k8s这一套的技术弄的(docker的功劳),提供预配置的环境镜像,
4环境配好了,但换机器的时候又得重新配一遍,此时忘记自己当时是怎么配的了可以将主机配置好的镜像保存到autodl中,如果想一直保存也可以放到CodeWithGPU,也可以在这里很轻松的使用别人部署好的镜像一键部署运行
5重新配好之后,想跑更多的实验,此时发现实验室的卡已经被占满了AutoDL 可以在实例关机后根据需求随时扩展资源(显卡数量,硬盘大小扩容缩容)。
6能跑实验了,但发现服务器空间不够了卡住了,自己又没权限,此时又得找管理员又是docker的功劳,对于当前的container,用户是拥有root权限的(命令都不用加sudo就能执行),空间不够问题见👆。
7跑完实验了,自己终于松口气回宿舍去了,回到宿舍导师发消息说想看看你的实验曲线跑得咋样,但你身边只有一台手机,此时你有点崩溃…AutoDL有自定义服务功能,可以监听特定端口,可以通过手机直接访问网页端autodl中打开服务直接查看(也可以把这个链接直接发给你的导师,公网链接)

PS: AutoDL可以开发票(【费用】->【发票管理】->【去开票】),可以让实验室报销,赢!

Reference

篇幅有限、经验有限,更多的内容其实autodl 官方文档写的很详细,欢迎大家指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值