堆的简单理解和代码实现

目录

1.堆的概念及结构

1.1概念

1.2性质

 2.堆的实现

2.1定义堆

2.2向下调整

2.3向上调整

2.3.2两种建堆方式时间复杂度的比较

2.4堆的初始化

2.5堆的销毁

2.6堆的插入操作

2.7堆的删除操作

2.8获取堆顶元素

2.9堆的判空操作

2.10堆内元素数量

2.11打印堆

3.TOP-K问题


1.堆的概念及结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段

1.1概念

堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵完全二叉树的数组对象。

 将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等。堆是非线性数据结构,相当于一维数组,有两个直接后继。

image-20210904162045167

 

拓展规律

1.2性质

 
1.堆中某个节点的值总是不大于或不小于其父节点的值;
2.堆总是一棵完全二叉树。

 2.堆的实现

2.1定义堆

typedef int HPDataType;

//定义大堆
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacityl;
}HP;

2.2向下调整

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int array[] = {27,15,19,18,28,34,65,49,25,37};

 前提:左子树是小堆,右子树也是小堆

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p2 = *p2;
	*p2 = tmp;
}



void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		//选出左右孩子中小的那一个
		if (child+1<n && a[child + 1] < a[child])//childe+1<n用于判断右孩子是否存在,因为完全二叉树可能没有右孩子
		{
			++child;
		}

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

int main()
{
	int a[] = { 27,15,19,18,28,34,65,49,25,37 };
	int n = sizeof(a) / sizeof(a[0]);
	AdjustDown(a, n, 0);

	return 0;
}
 

1.往堆顶插入新元素5

image-20210904154330173

 image-20210904154359674

2.元素5跟左右孩子中小的那个进行比较,若比他大,就交换

 image-20210904154528270

 3.继续与左右孩子中小的进行比较,若更大,就交换

image-20210904154640139

 4.继续比较,发现并不会比孩子节点小,跳出循环,新的小堆调整结束。

问题:左右子树不是小堆怎么办

倒数的第一个非子叶结点即为最后一个结点的父亲

主函数代码中加入建堆函数即可

    //建堆
	for (int i = (n-1-1)/2;i>=0;--i)
	{
		AdjustDown(a, n, i);
	}

问题:排升序,建大堆还是小堆?->建大堆

已知建堆的时间复杂度O(N)

为什么不能建小堆?

为什么建大堆?

2.3向上调整

 void AdjustUp(int* a, int child)
{
	int parent = (child - 1) / 2;
	//while (parent >= 0)  不对的 parent不会小于0
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

 从叶子节点插入一个元素后,想要继续保持堆的结构不变。从下往上,对二叉树进行调整,确保最后是小堆。

图示过程如下:

1.未进行插入新元素的堆:

image-20210904153618481

2.新元素0

image-20210904153648924

3.新元素0跟此时的父亲节点5比较,比5小,交换

image-20210904153815449

4.然后0继续和新的父亲节点2比较,比2小,交换

image-20210904153910297

5.然后0继续和新的父亲节点0进行比较,比1小,交换

image-20210904153956590

2.3.2两种建堆方式时间复杂度的比较

运用错位相减计算

 

2.4堆的初始化

这里以建立小堆为例,我们需要保证小堆的结构,这里通过自下而上进行调整。

这里提一嘴为什么建堆过程中的for循环内i初始值设置为(n-1-1)/2,首先数组最后一个元素下标是n-1,又有child=2*parent+1,带入后就是这个初始值。

void HeapInit(HP* php, HPDataTpye* a, int n)
{
	assert(php);

	php->a = (HPDataTpye*)malloc(sizeof(HPDataTpye)*n);
	if (php->a == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}

	memcpy(php->a, a, sizeof(HPDataTpye)*n);

	// 建堆
	for (int i = (n-2)/2; i >= 0; --i)
	{
		AdjustDown(php->a, n, i);
	}

	php->size = n;
	php->capacity = n;
}

 

2.5堆的销毁

直接free掉a,然后把php->a置空,并把size和capacity置0

void HeapDestroy(HP* php)
{
	assert(php);

	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

2.6堆的插入操作

1.先判断下空间是否满了,若满了,realloc开辟一块新的空间,没满就不需要开辟。

2.然后把新插入的元素放在最后一个叶子节点处

3.接下来与其双亲结点进行比较,如果比双亲结点小,就交换其值,一直不断重叠

4.最后如果该数据比双亲结点值大,就结束调整;如果当child等于0,就结束调整

 

// 插入x,保持他继续是堆
void HeapPush(HP* php, HPDataTpye x)
{
	assert(php);
	if (php->size == php->capacity)
	{
		HPDataTpye* tmp = (HPDataTpye*)realloc(php->a, php->capacity * 2 * sizeof(HPDataTpye));
		if (php->a == NULL)
		{
			printf("realloc fail\n");
			exit(-1);
		}
		php->capacity *= 2;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}

2.7堆的删除操作

该函数的作用是删除堆顶元素,并且不能毁坏堆结构。借助堆排序的思想,直接把堆顶第一个元素和堆底第一个元素交换,然后php->size减1,再调用一次自上而下的排序,因为size减1了,相当于除了原本堆顶第一个元素以外的元素进行调整。

// 删除堆顶数据,删除后保持他继续是堆
void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);
}

2.8获取堆顶元素

// 获取堆顶的数据,也就是最值
HPDataTpye HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));

	return php->a[0];
}

2.9堆的判空操作

bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}

2.10堆内元素数量

int HeapSize(HP* php)
{
	assert(php);

	return php->size;
}

2.11打印堆

void HeapPrint(HP* php)
{
    assert(php);

	for (int i = 0; i < php->size; ++i)
	{
		printf("%d ", php->a[i]);
	}
	printf("\n");
}

3.TOP-K问题

TOP-K 问题:即求数据结合中前 K 个最大的元素或者最小的元素,一般情况下数据量都比较大
比如:专业前 10 名、世界 500 强、富豪榜、游戏中前 100 的活跃玩家等
对于 Top-K 问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了 ( 可能
数据都不能一下子全部加载到内存中 ) 。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前 K 个元素来建堆
k 个最大的元素,则建小堆
k 个最小的元素,则建大堆
2. 用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余 N-K 个元素依次与堆顶元素比完之后,堆中剩余的 K 个元素就是所求的前 K 个最小或者最大的元素。
void PrintTopK(int* a, int n, int k) {
    // 1. 建堆--用a中前k个元素建堆
    int* kminHeap = (int*)malloc(sizeof(int)*k);
	assert(kminHeap);
	
	for(int i = 0;i<k;i++)
	{
		kminHeap[i] = a[i];
	}
	
	//减小堆 
	for(int j = (k-1-1)/2;j>=0;j--)
	{
		AdjustDown(kminHeap,k,j); 
	} 
	
    // 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
    for(int i = k;i<n-1;i++ )
    {
    	if(a[i]>kminHeap[0])
    	{
    		kminHeap[0] = a[i];
    		AdjustDown(kminHeap,k,0);
		}
	}
	
	for(int j = 0;j<k;j++)
	{
		printf("%d",kminHeap[j]);
	}
	printf("\n");
	free(kminHeap);
}
void TestTopk() {
	int n = 10000;
	int* a = (int*)malloc(sizeof(int)*n);
	srand(time(0));
	for (size_t i = 0; i < n; ++i) {
		a[i] = rand() % 1000000;
	}
	a[5] = 1000000 + 1;
	a[1231] = 1000000 + 2;
	a[531] = 1000000 + 3;
	a[5121] = 1000000 + 4;
	a[115] = 1000000 + 5;
	a[2335] = 1000000 + 6;
	a[9999] = 1000000 + 7;
	a[76] = 1000000 + 8;
	a[423] = 1000000 + 9;
	a[3144] = 1000000 + 10;
	PrintTopK(int* a, n, 10);
}
void PrintTopK(int* a, int n, int k)
{
	HP hp;
	HeapInit(&hp, a, k);

	for (int i = k; i < n; ++i)
	{
		if (a[i] > HeapTop(&hp))
		{
			HeapPop(&hp);
			HeapPush(&hp, a[i]);
		}
	}

	HeapPrint(&hp);

	HeapDestroy(&hp);
}

void TestTopk()
{
	int n = 100000;
	int* a = (int*)malloc(sizeof(int) * n);
	srand(time(0));
	for (size_t i = 0; i < n; ++i)
	{
		a[i] = rand() % 1000000;
	}
	//随机赋值十个最大的数
	a[5] = 1000000 + 1;
	a[1231] = 1000000 + 2;
	a[531] = 1000000 + 3;
	a[5121] = 1000000 + 4;
	a[115] = 1000000 + 5;
	a[2335] = 1000000 + 6;
	a[9999] = 1000000 + 7;
	a[76] = 1000000 + 8;
	a[423] = 1000000 + 9;
	a[3144] = 1000000 + 10;

	PrintTopK(a, n, 10);
}

总结:

1.插入 用向上调整 尾开始

2.删除 用向下调整 头开始

3.给数组建堆 用向下调整,注意是第一个非叶子结点开始

4.topk问题  建k的小堆 if判断替换

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值