网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
get_distance 方法的注解看起来非常的杂乱。开发者需要知道的信息是 p1 表示的是地点,而非这个地点信息包含着两个浮点数以及一个可选的字符串——这是编辑器需要做的工作。
编辑器的支持程度取决于你注解的透彻性。在上面的例子中,你也可以只写 Tuple 而省略掉指出这个元组所包含的内容。由于人们大多是比较懒惰的,我认为这里的编辑器支持做的不是很好。这不是编辑器的错,但是它因此经常无法提供较好的代码提示支持。
2. 字典
字典是 Python 的基本数据类型,并且可能是 Python 中最常见的传递数据的载体。与元组相比,字典由于要保存属性的名称,它的内存占用会大一些,但是这仍是可以接受的。通过索引来获取数据 很快 。字典总是可以修改的,不过有一个第三方的库 frozendict 可以解决字典可以被随意修改的问题。
from typing import Any, Dict
pos1 = {“longitude”: 49.0127913,
“latitude”: 8.4231381,
“address”: “Parkstraße 17”}
pos2 = {“longitude”: 42.1238762,
“latitude”: 9.1649964,
“address”: None}
def get_distance(p1: Dict[str, Any],
p2: Dict[str, Any]) -> float:
pass
在实际中,注解确实很糟糕。通常来说几乎没有字典的注解,在大部分情况下的注解会是 Dict[str, Any] 。
TypedDict ( PEP 589 ) 自从 Python 3.8 一直存在,但是我从没在大型的项目中见到这样的写法。 TypedDict 是一个杀手级功能 ,但是这无关大多数的项目,我们希望在旧有的 Python 版本中也获得此功能支持。
基于上述的原因,字典的编辑器支持效果甚至比元组更差。
3. 命名元组
命名元组( NamedTuples ) 在 Python 2.6 中被加入,索引此数据结构已经存在很久了。命名元组事实上也是元组,但是他们会有一个名称以及一个构造器,用来接受关键字参数:
‘’’
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
‘’’
from collections import namedtuple
attribute_names = [“longitude”, “latitude”, “address”]
Position = namedtuple(“Position”, attribute_names, defaults=(None,))
pos1 = Position(49.0127913, 8.4231381, “Parkstraße 17”)
pos2 = Position(42.1238762, 9.1649964)
def get_distance(p1: Position, p2: Position) -> float:
pass
命名元组解决了类型声明注解难以阅读的问题。因此,它也解决了我上文中提到的编辑器支持不完全的问题。
有趣的是 NamedTuples 是不能感知到类型的:
from collections import namedtuple
Coordinates = namedtuple(“Coordinates”, [“x”, “y”])
BMI = namedtuple(“BMI”, [“weight”, “size”])
a = Coordinates(60, 170)
b = BMI(60, 170)
a
Coordinates(x=60, y=170)
b
BMI(weight=60, size=170)
a == b
True
4. attrs
attrs 是一个第三方的库,用来减少一些重复模板代码的编写。开发者可以在类上面添加一个 @attrs.s 装饰器来引入。属性则可以使用一个 attr.ib() 方法来赋值:
‘’’
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
‘’’
from typing import Optional
import attr
@attr.s
class Position:
longitude: float = attr.ib()
latitude: float = attr.ib()
address: Optional[str] = attr.ib(default=None)
@longitude.validator
def check_long(self, attribute, v):
if not (-180 <= v <= 180):
raise ValueError(f"Longitude was {v}, but must be in [-180, +180]")
@latitude.validator
def check_lat(self, attribute, v):
if not (-90 <= v <= 90):
raise ValueError(f"Latitude was {v}, but must be in [-90, +90]")
pos1 = Position(49.0127913, 8.4231381, “Parkstraße 17”)
pos2 = Position(42.1238762, 9.1649964)
def get_distance(p1: Position, p2: Position) -> float:
pass
通过把装饰器改成 @attr.s(frozen=True)来使这个类变得不可修改。
你也可以在构造器入参的时候自动执行代码。这被称为是 “转换”。
@attr.s
… class C(object):
… x = attr.ib(converter=int)
o = C(“1”)
o.x
Visual Studio Code 中对类型注解有很多的插件可以使用。
5. Dataclass
Dataclasses 在 PEP 557 中被加入 Python 3.7。它与 attrs 类似,但是被收录于标准库中。一个很重要的点是 dataclass 就是普通的类, 不过是其中保存大量的数据而已。
与 attrs 不同的是,dataclass 使用类型注解而非 attr.ib() 这样的注解。我认为这样大大提高了可读性。另外,由于现在对属性有了注解,编辑器的支持效果也更好了。
你可以很容易的利用装饰器 @dataclass(frozen=True) 使 dataclass 变成不可修改的——这与 attrs 类似。
from typing import Optional
from dataclasses import dataclass
@dataclass
class Position:
longitude: float
latitude: float
address: Optional[str] = None
pos1 = Position(49.0127913, 8.4231381, “Parkstraße 17”)
pos2 = Position(42.1238762, 9.1649964, None)
def get_distance(p1: Position, p2: Position) -> float:
pass
这里我少说的一部分是属性的验证。可以在构造器中使用__post_init__(self)
来实现:
‘’’
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
‘’’
def post_init(self):
if not (-180 <= self.longitude <= 180):
v = self.longitude
raise ValueError(f"Longitude was {v}, but must be in [-180, +180]")
if not (-90 <= self.latitude <= 90):
v = self.latitude
raise ValueError(f"Latitude was {v}, but must be in [-90, +90]")
你也可以将 dataclass 和属性一起使用:
@dataclass
class Position:
longitude: float
latitude: float
address: Optional[str] = None
@property
def latitude(self) -> float:
“”“Getter for latitude.”“”
return self._latitude
@latitude.setter
def latitude(self, latitude: float) -> None:
“”“Setter for latitude.”“”
if not (-90 <= latitude <= 90):
raise ValueError(f"latitude was {latitude}, but has to be in [-90, 90]")
self._latitude = latitude
@property
def longitude(self) -> float:
“”“Getter for longitude.”“”
return self._longitude
@longitude.setter
def longitude(self, longitude: float) -> None:
“”“Setter for longitude.”“”
if not (-180 <= longitude <= 180):
raise ValueError(f"longitude was {longitude}, but has to be in [-180, 180]")
self._longitude = longitude
但是,我不太喜欢这种超级冗长且丢失了许多 dataclass 独有魅力的手段。 如果你需要类型未涵盖的验证,请使用 Pydantic。
6. Pydantic
Pydantic 是一个专注于数据各实验组和设置管理的第三方库。要使用它,你可以继承自 pydantic.BaseModel 或者创建一个 Pydantic 的 dataclass:
from typing import Optional
from pydantic import validator
from pydantic.dataclasses import dataclass
@dataclass(frozen=True)
class Position:
longitude: float
latitude: float
address: Optional[str] = None
@validator(“longitude”)
def longitude_value_range(cls, v):
if not (-180 <= v <= 180):
raise ValueError(f"Longitude was {v}, but must be in [-180, +180]")
return v
@validator(“latitude”)
def latitude_value_range(cls, v):
if not (-90 <= v <= 90):
raise ValueError(f"Latitude was {v}, but must be in [-90, +90]")
return v
pos1 = Position(49.0127913, 8.4231381, “Parkstraße 17”)
pos2 = Position(longitude=42.1238762, latitude=9.1649964)
def get_distance(p1: Position, p2: Position) -> float:
pass
乍一看,这与标准的 @dataclass 相同,只是从 Pydantic 获得了 dataclass 装饰器。
可变性和散列性
我不太会自觉地考虑可变性,但是在很多情况下,我希望我的类是不变的。最大的例外是数据库模型,但它们本身就是自洽的。
可以选择将类标记为冻结以使其对象不可变,这非常不错。
为一个可变对象实现 hash 是有问题的,因为当对象改变时哈希值可能会改变。这意味着如果对象在字典中,则字典将需要知道对象的哈希值已更改,并将其存储在其他位置。因此,默认情况下,dataclass 和 Pydantic 都不对可变类进行散列,因为他们有 unsafe_hash 。
默认字符串表示
拥有合理的字符串表示形式非常有帮助(例如,用于日志记录)。老实说:很多人都在进行 print 调试。
如果我们打印上面例子中的 pos1 ,下面是我们能得到的。为了方便阅读已经添加了换行和缩进。原始的输出是在一行内的:
‘’’
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
‘’’
print(pos1)
Plain class : <main.Position object at 0x7f1562750640>
1 Tuples : (49.0127913, 8.4231381, ‘Parkstraße 17’)
2 Dicts : {‘longitude’: 49.0127913,
‘latitude’: 8.4231381,
‘address’: ‘Parkstraße 17’}
3 NamedTuple: Position(longitude=49.0127913,
latitude=8.4231381,
address=‘Parkstraße 17’)
4 attrs : Position(longitude=49.0127913,
latitude=8.4231381,
address=‘Parkstraße 17’)
5 dataclass : Position(longitude=49.0127913,
latitude=8.4231381,
address=‘Parkstraße 17’)
可以看到从普通类创建的对象的字符串表示形式是无用的。元组看起来更好,但是它们没有指出哪个索引代表哪个属性。其余所有表示形式都很棒。它们很容易理解,甚至可以用来重新创建对象!
数据验证
现在我们已经了解了如何为普通类、attrs、dataclass 和 Pydantic 实现数据验证。但我们还并不清楚错误消息的样子。
接下来,我将新建一个 Position(1234, 567) ,里面的经度和纬度都是不正确的。下面是不同的数据结构触发的错误信息:
Plain Class
ValueError: Longitude was 11111, but has to be in [-180, 180]
4: attr
ValueError: Longitude was 1234, but must be in [-180, +180]
5: dataclasses
(same as plain classes is possible)
6: Pydantic
pydantic.error_wrappers.ValidationError: 2 validation errors for Position
longitude
Longitude was 1234.0, but must be in [-180, +180] (type=value_error)
latitude
Latitude was 567.0, but must be in [-90, +90] (type=value_error)
我要指出的是这一点:Pydantic 非常清楚地为我们提供了所有错误。 普通的类和属性只会给我们返回第一个错误。
JSON 序列化
JSON 是在网络上交换数据的方式。GitLab API 也不例外。假设我们要拥有可以序列化为 JSON 的 Python 对象,以[获取单个合并分支请求]( docs.gitlab.com/ee/api/merg… 在 Pydantic 中,就这么简单(删除了许多属性以提高可读性):
from pydantic import BaseModel
class GitlabUser(BaseModel):
id: int
username: str
class GitlabMr(BaseModel):
id: int
squash: bool
web_url: str
title: str
author: GitlabUser
mr = GitlabMr(
id=1,
squash=True,
web_url=“http://foo”,
title=“title”,
author=GitlabUser(id=42, username=“Joe”),
)
json_str = mr.json()
print(json_str)
这返回了:
{“id”: 1, “squash”: true, “web_url”: “http://foo”, “title”: “title”, “author”: {“id”: 42, “username”: “Joe”}}
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!