Python爬虫:招聘岗位千千万,看我把它们统统爬下来进行可视化分析,康康有没有适合你的岗位

  • 二、准备工作

    • 1、使用的软件
  • 2、使用的模块

  • 三、大致流程

  • 四、代码展示

一、写在前面

======================================================================

这不一年过的差不多了,又临近过年了,对于明年要找工作的兄弟们,想好找什么工作了吗?

今天来试试爬一下某著名广告铺满了电梯的招聘网站,对岗位进行可视化数据分析,为明年做做准备。

在这里插入图片描述

二、准备工作

======================================================================

1、使用的软件


  • python 3.8

  • pycharm 2021专业版

  • 谷歌浏览器 / 火狐浏览器 (千万不要下载错了, 搞了个什么双核浏览器)

驱动安装教程:谷歌浏览器驱动安装

驱动下载地址:驱动下载地址

驱动下载的版本要和你的浏览器版本信息最相近那个

2、使用的模块


  • selenium pip install selenium(第三方模块, 是需要去安装, 指定模块版本进行安装)

  • csv

不会安装模块和安装慢看这篇:如何安装python模块, python模块安装失败的原因以及解决办法

三、大致流程

======================================================================

1、爬虫的基本流程

2、可视化分析展示

3、selenium模块的使用

4、保存csv

四、代码展示

======================================================================

1、爬虫部分

from selenium import webdriver # 导入模块

from selenium.webdriver.common.keys import Keys

import csv # 保存csv表格数据模块

import time # 时间模块

mode=‘w’ 写入(覆盖) a 追加写入(不会覆盖) wb 二进制写入 b 二进制模式 图片 视频 音频 特定格式文件

f = open(‘招聘数据全国_2.csv’, mode=‘a’, encoding=‘utf-8’, newline=‘’)

1. 全部选中内容

2. ctrl + R 勾选上 正则.*

3. 通过正则表达式匹配替换数据

csv_writer = csv.DictWriter(f, fieldnames=[

‘标题’,

‘地区’,

‘薪资’,

‘经验’,

‘公司名’,

‘公司领域’,

‘福利’,

‘详情页’,

])

csv_writer.writeheader() # 写表头

selenium 爬取的速度相对而言会比较慢 >>> 模拟人的行为去操作浏览器

极大程度减少被反爬 其次 如果某网站有JS逆向加密 requests 爬取虽然快, 但是对于加密的网站

driver = webdriver.Chrome() # 实例化一个浏览器对象

程序员做东西, 其实不在乎过程, 只要结果 你只要能够实现一些东西就可以了 除非有特定需求

driver.get(‘https://www.zhipin.com/c100010000/?query=python&ka=sel-city-100010000’)

输入我们想要搜索的职位名字

通过xpath语法或者css选择器语法

除了模拟点击之外, 还可以 操作键盘事件

给一个隐式等待 等10秒 等网页数据加载完就可以了

time.sleep(10) 死等 一定要等够10秒钟

driver.implicitly_wait(10) # 为了等待网页把元素都加载出来 加载完毕就运行下面的代码

driver.find_element_by_css_selector(‘.ipt-search’).send_keys(‘python’) # 通过css选择器找寻element元素面板里面数据内容

driver.find_element_by_css_selector(‘.ipt-search’).send_keys(Keys.ENTER) # 通过css选择器找寻element元素面板里面数据内容

driver.find_element_by_css_selector(‘.btn.btn-search’).click() # 通过css选择器找寻element元素面板里面数据内容

driver.implicitly_wait(10)

driver.find_element_by_css_selector(‘#filter-box > div > div.condition-box > dl > dd > a:nth-child(3)’).click()

def get_job_info():

lis = driver.find_elements_by_css_selector(‘.job-list li’) # elements 获取多个标签数据 element 获取一个

print(lis) # for 遍历提取列表每一个元素

for li in lis:

title = li.find_element_by_css_selector(‘.job-name a’).text # 标题

area = li.find_element_by_css_selector(‘.job-area’).text # 城市

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

t/6c361282296f86381401c05e862fe4e9.png)

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-JpnouR6x-1712858478674)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值