插入排序
void insertsort(int *arr, int n)
{
int i;
for (i = 0; i < n - 1; i++)
{
int end = i;
int tmp = arr[end + 1];
while (end >= 0)
{
if (tmp < arr[end])
{
arr[end + 1] = arr[end];
end--;
}
else
{
break;
}
}
arr[end+1] = tmp;//因为走到了要求的数的前一个位置,那么他的后一位就是我们要插入的位置
}
}
希尔排序
// 时间复杂度是O(N*logN);
void shellsort(int *arr,int n)
{
//为了应对假如说使用插入排序的时候,那个数过于无序,如我们对一个逆序的数组,将他排序成顺序的,
//一个一个的排时间复杂度过于大,太浪费了
//所以我们可以使用中间间隔多的为一组进行排序,尽量把大的数字放到后面去,小的数字放到前面去,做到尽量有序
//当间隔为1的时候就是直接插入排序
int gap = n;
int i;
while (gap > 1)
{
gap = gap / 2;//如果gap是%2的话,最后gap会变成1,就是直接插入排序
//假如我们是gap=gap/3的话,最后可能就不能变成1变成直接插入排序了,希尔排序内部的算法可以类比,直接插入排序,只不过把原来的1变成了gap
for (i = 0; i < n - gap; i++)
{
int end = i;
int tmp = arr[end + gap];
while (end >= 0)
{
if (tmp < arr[end])
{
arr[end + gap] = arr[end];
end -= gap;
}
else
{
break;
}
}
arr[end + gap] = tmp;
}
}
}
选择排序
void selectsort(int *arr, int n)
{
int begin = 0, end = n - 1;//
while (begin < end)//begin和end分别从两边开始走,begin一方找到的是最小的那些数,end一方找到的是最大的一些数,当两者相遇或者刚好走到挨着的时候,就排序完成了
{
int max=begin, min=begin;
for (int i = begin; i <= end; i++)
{
if (arr[i] < arr[begin])
{
min = i;//把最小的下标存到min里面
}
if (arr[i] > arr[begin])
{
max = i;//把最大的下标存到max里面
}
}
swap(&arr[begin], &arr[min]);//处理完后把找到的最小下标和begin进行交换
//假如说第一个就是最大的,那交换之后,最大的就和最小的交换了
if(begin==maxi)
{
maxi=mini;
}
swap(&arr[end], &arr[max]);//把最大下标和end进行交换
begin++;
end--;
}
}
快速排序
void quicksort(int *arr, int left,int right)
{
if (left >= right)//当left>right就算是不存在,=就是只有一个值,都是不用排
{
return;
}
int begin = left, end = right;
int pivot = begin;//把左边做一个坑
int key = arr[begin];//把左边的数作为关键字,保存起来
//一趟的排序
while (begin < end)//左边做坑则右边先动
{
//右边找小,放到左边
while (begin < end&&arr[end] >= key)//大于就--,小于才停下来//同时end走的必须是在begin右边,因为begin左边都是以及处理过的,所以end要大于begin
{
--end;
}
//找到的小的,放到左边,从而自己形成了新的坑位
arr[pivot] = arr[end];
pivot = end;
//现在去找大
while (begin<end &&arr[begin] <= key)//始终保证begin<end的条件
{
++begin;
}
//大的放到左边的坑,自己形成新的坑位
arr[pivot] = arr[begin];
pivot = begin;
}
pivot = begin;//到达了中间的位置
arr[pivot] = key;
//[在left,right]
//每次调用这函数都被分成3部分
//[left,pivot-1],pivot,[pivot+1,right]//始终被分成了这三个部分,pivot是已经有序的了
//只要让左子区间和右子区间有序,我们就有序了,我们就用到了分治递归的思想
quicksort(arr, left, pivot - 1);
quicksort(arr, pivot + 1, right);
}