UML方法的相关理论知识补充

这篇blog是针对前一篇论文阅读笔记的补充,主要包括了一些理论知识,便于让小白更容易理解论文中的相关概念。希望对大家有所帮助!!

基于不确定性的估计方法 (Uncertainty estimation method):评估模型预测置信度和可靠性的一种重要技术,在医学图像分析和其他高风险应用中,了解模型的预测不确定性对提高决策的可靠性和解释性至关重要;

基于不确定性估计的方法:

  • 贝叶斯神经网络:通过将神经网络的权重视为概率分布而非固定值,来估计模型不确定性。训练和推理过程中,通过采样不同的权重分布,计算预测结果的分布,从而获得不确定性估计。

  • 蒙特卡洛 Dropout:在预测阶段,使用Dropout层(通常在训练阶段使用的正则化技术)来生成多个预测结果。这些结果的方差可以用来估计不确定性。这种方法被称为蒙特卡洛Dropout,因为它通过多次采样(类似于蒙特卡洛方法)来估计不确定性。

  • 深度集成:通过训练多个独立的神经网络模型,并将它们的预测结果进行集成,来估计不确定性。每个模型的预测结果的方差反映了不确定性。这种方法需要较多的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值