UML方法的相关理论知识补充

这篇blog是针对前一篇论文阅读笔记的补充,主要包括了一些理论知识,便于让小白更容易理解论文中的相关概念。希望对大家有所帮助!!

基于不确定性的估计方法 (Uncertainty estimation method):评估模型预测置信度和可靠性的一种重要技术,在医学图像分析和其他高风险应用中,了解模型的预测不确定性对提高决策的可靠性和解释性至关重要;

基于不确定性估计的方法:

  • 贝叶斯神经网络:通过将神经网络的权重视为概率分布而非固定值,来估计模型不确定性。训练和推理过程中,通过采样不同的权重分布,计算预测结果的分布,从而获得不确定性估计。

  • 蒙特卡洛 Dropout:在预测阶段,使用Dropout层(通常在训练阶段使用的正则化技术)来生成多个预测结果。这些结果的方差可以用来估计不确定性。这种方法被称为蒙特卡洛Dropout,因为它通过多次采样(类似于蒙特卡洛方法)来估计不确定性。

  • 深度集成:通过训练多个独立的神经网络模型,并将它们的预测结果进行集成,来估计不确定性。每个模型的预测结果的方差反映了不确定性。这种方法需要较多的计算资源,但通常能提供更好的不确定性估计。

  • 证据深度学习:通过为模型预测分配证据分布来估计不确定性。证据分布反映了模型对预测结果的置信程度,证据越多,置信度越高。这种方法可以同时提供图像级和像素级的置信度估计。

置信度:模型的预测置信度是指模型对其预测结果的自信程度,通常以概率的形式表示。

置信度反映了模型在给定输入下,对某个预测结果的确信程度。高置信度意味着模型对其预测结果非常有信心,而低置信度则表示模型对预测结果缺乏信心。

提高置信度的策略

  • 数据增强:通过增加训练数据量或数据增强技术,提升模型对各种输入的鲁棒性,从而提高置信度。

  • 模型集成:通过集成多个模型的预测结果,可以获得更稳定和可靠的预测,提高置信度。

  • 校准技术:使用温度缩放(Temperature Scaling)等校准技术,可以调整模型的置信度输出,使其更接近实际概率。

tips:

  1. 信念值(belief mass) ( b_k^c ):表示模型认为某张图片属于第 k 类的概率。比如 ( b_1^c ) 代表模型认为图片是猫的概率, ( b_2^c ) 代表是狗的概率,等等。====>概率

  2. 证据(evidence) ( e_k^c ):这些是模型在做判断时依据的数据或者证据,通过一种激活函数(激活层 softplus)得到。这些证据可以帮助计算出信念值。

  3. 分布参数化(parameterization of distribution):通过一个叫 Dirichlet 分布的统计方法,用这些证据来描述每个类的信念值。

一些专业性的理论名词,基本上我都用一些通俗易懂的语言描述了,如果对大家有帮助,请多点小星星哦~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值