一剑霜寒十四州

该代码段展示了一个使用PyTorch构建的神经网络模型,包括两个全连接层(fc1,fc2,fc3),使用ReLU激活函数和LogSoftmax损失函数。模型在SGD优化器下进行训练,打印训练过程中的损失,并在测试集上计算平均损失和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(28 * 28, 200)
        self.fc2 = nn.Linear(200, 200)
        self.fc3 = nn.Linear(200, 10)

def forward(self, x):
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return F.log_softmax(x)
    net = Net()
    print(net)

Net (
(fc1): Linear (784 -> 200)
(fc2): Linear (200 -> 200)
(fc3): Linear (200 -> 10)
)

optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)
criterion = nn.NLLLoss()

# 运行主训练循环
for epoch in range(epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = Variable(data), Variable(target)
        # 将数据大小从 (batch_size, 1, 28, 28) 变为 (batch_size, 28*28)
        data = data.view(-1, 28*28)
        optimizer.zero_grad()
        net_out = net(data)
        loss = criterion(net_out, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.data[0]))
loss.backward()
optimizer.step()

if batch_idx % log_interval == 0:
    print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.data[0]))
# 运行测试循环
test_loss = 0
correct = 0
for data, target in test_loader:
    data, target = Variable(data, volatile=True), Variable(target)
    data = data.view(-1, 28 * 28)
    net_out = net(data)
    # 对批处理损失求和
    test_loss += criterion(net_out, target).data[0]
    pred = net_out.data.max(1)[1]  # 得到有最大log概率的下标
    correct += pred.eq(target.data).sum()

test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值