【Python可视化实战】葡萄酒品质数据分析

本文通过Python对葡萄酒品质数据进行分析,探讨各项理化指标如何影响葡萄酒品质。利用数据可视化技术,揭示了固定酸度、挥发性酸度、pH值等与品质的关系,帮助理解葡萄酒口感和品质的内在联系。通过对数据的深入挖掘,可以指导葡萄酒生产策略和消费者选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、引言

葡萄酒作为一种品味与文化并重的饮品,其品质的评估与提升一直是业内的核心议题。随着大数据和可视化技术的快速发展,我们能够以全新的方式探索葡萄酒的品质特性。通过将葡萄酒的各项理化指标和感官评价数据转化为直观的图表和图像,我们可以更深入地理解葡萄酒品质的内在规律,为生产、销售和消费者提供更有价值的见解。

葡萄酒品质可视化数据分析利用现代信息技术,将复杂的数据转化为易于理解的视觉形式。这一过程不仅有助于揭示葡萄酒品质的奥秘,还能为葡萄酒产业的发展提供有力支持。通过可视化数据分析,酒厂可以更好地了解消费者的喜好和市场趋势,从而调整生产策略;消费者则可以通过直观的数据比较,选择更适合自己口味的葡萄酒。

二、数据集描述

本文基础库不作详细描述。

本次案例使用葡萄酒品质数据,该数据集包含1599种红葡萄酒的各种信息,如酒的固定酸度、挥发性酸度和pH值等测量值,也包括一个酒的品质得分,该得分是至少三类口味测试者给该款酒打分的平均值。该数据来源于公开数据库UCI,更多详细信息可以查看UCI Machine Learning Repository 。

数据中变量有:

变量名称 含义说明
fixed acidity 固定酸度
volatile acidity 挥发性酸度
pH 酸碱值
alcohol 酒精度数
quality 品质得分

三、数据分析

3.1 导入数据

import numpy as np

wines1=np.genfromtxt("./winequality-red.csv",delimiter=",")

wines1

这段代码的主要作用是从一个CSV文件中读取葡萄酒品质数据,并将这些数据存储在一个NumPy数组中。具体来说,代码中的np.genfromtxt函数用于从指定的CSV文件中读取数据。该函数会根据提供的分隔符(在这个例子中是逗号)将数据拆分成多个列,并将它们存储在一个NumPy数组中。

数据中第一行为缺失值,这是因为数据第一行为各变量名,是字符串格式,而genfromtxt默认导入的数据格式为浮点型,故会被读成缺失值。为了防止缺失值的产生,我们可以调整参数skip_header为1&

【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip 数据挖掘大作业-葡萄酒质量分析算法python源码+项目说明+详细注释+数据.zip
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zoi Gil(学习)

你的鼓励是对我创作的最大支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值