不确定推理---人工智能

概率的概念:使它成立的世界的概率之和。

无条件概率(unconditional probability)先验概率(prior probability) ——无任何其他信息下命题的信念度 

证据——一些已经透露的信息

条件概率(conditional probability)后验概率(posterior probability)——给定证据下命题的信念度 

边缘

边缘概率只考虑x或只考虑xy。

对应加法法则

 边缘(求和消元):通过加法合并折叠的行

§边分布是消除某个(些)变量的子表

联合概率

同时考虑xy。

乘法法则

有时已知条件分布,需要联合分布 

链式法则

条件概率

联合概率除以边缘概率。

条件概率可以理解为对联合概率的归一化过程(结果相同)

§ 步骤 1 :计算 Z= 所有条目的总和
§ 步骤 2 :将每个条目除以 Z

贝叶斯规则

执果索因

大写字母表示随机变量

事件是一组结果

独立性

两个变量独立,边缘独立、绝对独立:

另一种表示,y事件发生与否对x没有影响。

表示为:

条件独立性

 给定Z,X条件独立于Y,

在给定z的情况下,y是否发生对x没有影响

条件独立可以简化链式法则

贝叶斯网络

▪节点: 带值域的变量 
▪弧(有向弧): interactions相互关系 
箭头意味着直接因果关系。 只有变量 绝对独立的分布才能用没有弧的贝叶斯网 来表示

贝叶斯网络 =(图)拓扑结构+局部条件概率 

条件概率表CPT

 每个节点都对应着一个CPT,指明了该变量与父节点之间概率依赖的数量关系。

父节点会影响子节点。

贝叶斯拓扑结构蕴含条件独立性

链式法则的简化,对于贝叶斯网络中的子节点,其概率仅依赖于所有的父节点。

       当加入节点Xi,确保其父节点 “阻塞”了它与其他祖先节点的联系

       给定Xi的父节点,每个变量条件独立于它的非子孙节点变量(即所有它之前的变量)

和之前的变量,没有关系,则不影响条件概率

子节点只受其父节点的影响。

性质:

节省了大量空间!局部CPT

还可以更快地回答查询

BNs 反映出真正的因果模式

BNs 不必是因果关系

有时域上不存在因果网络(尤其是缺少变量时)例如,变量Traffic(交通堵塞)和Drip(屋顶滴雨),反映相关性而非因果关系

拓扑结构可能恰好对因果结构进行编码

拓扑结构真正编码条件独立性

条件独立性判断

重要,根据Active/inactive triplet来判断条件独立性)

----》

------》

有如下关系:每个子节点只收到自己父节点的影响,所以在父节点确定的情况下,他和前面的其他节点独立。

       

因果链

给定Y ,保证X独立于Z!!!!!!!!!!

Y不是观测变量,值不确定,X会通过影响Y值进而影响Z,具备流动性。

Y是观测变量,值确定了,X就影响不到Z了。

因果链上的证据“阻塞”了影响。

共因链

观察原因可以阻断结果之间的影响。

x,z是受y影响的结果。

 共果链

观察一种结果反而会激活可能原因之间的影响。

D-separation D-分离激活/非激活路径 

只需要记住非激活的三种!

 考虑从 X Y 所有(无向)路径无激活路径 = 独立

一条路径只要有一个三元组非激活那路径就处于非激活状态

如果每个三元组都处于激活状态,那么路径处于激活状态:(不独立)

§ 因果链 A -> B -> C ,其中 B 未被观察 (任一方向)。
§ 共因链 A <- B -> C ,其中 B 未被观察
§ 共果链 (v 型结构 )A -> B <- C ,其中 B 或其后代中一个被观察  

阻断一条路径只需要一个非激活的路径!如果要证明不独立,需要每个节点都是激活的!

示例:

 检查所有的 Xi和 Xj之间的(无向!)路径。如果存在有一个或多个处于激活状态,则不能保证独立性

否则,如果所有路径都非激活,则保证独立性

 阻断一条路径,只需要一个三元组非激活,但要证明两节点独立,需要阻断所有的路径

局部马尔可夫

a)给定父节点(浅紫色区域中所示的Ui),节点X条件独立于它的非子孙节点(例如,Zi j)。

b)给定它的马尔可夫毯(浅紫色区域:父结点、子结点以及子结点的父结点),节点X条件独立于网络中的所有其他节点

朴素贝叶斯

共因链:

给定“原因” 变量时,“结果”变量不是严格独立,是条件独立

给定“原因” 变量时,

“结果”变量不是严格独立,是条件独立

朴素贝叶斯分类

贝叶斯网络的精确推理和近似推理

通过枚举进行推理

我们想要

h1,h2,……hr是其余的未知变量

评估树

 枚举是低效的:重复计算例如,对于每个e 的值计算P (j|a)P (m|a)

使用评估树,存储值,不用进行重复计算。

计算过程自顶向下,沿着每条路径将值相乘,并在“+”节点上求和

递归深度优先枚举:O(n)空间,O(dn)时间

求解过程:

 选择任何已知值

连接所有因子,然后求出所有隐藏变量的总和

连接因子:

使用链式法则

消除、边缘化
§ 取一个因子,求一个变量的和
多重链接,多重消除(=枚举推理)

 变量消元

变量消元,边链接,边消除变元。

选择已知值,就可以消除除查询 + 证据之外的所有变量

标准化的过程就是求条件概率的过程。

P(L|+r)=P(+r,L)/P(+r)=P(+r,L)/[P(+r,+l)+P(+r,-l)]

采样

 为什么要采样?学习:从未知分布中获取样本

推理:获取样本比计算正确答案更快(例如使用变量消除法)例如上面使用的朴素贝叶斯分类,根据已知来推概率会容易的多

先验采样

按照拓扑顺序依次对每个变量进行采样

对实际生成的样本进行计数来计算

拒绝采样

拒绝所有与证据不匹配的样本,剩余样本中统计频次,计算估计概率

§ 拒绝采样的问题 :
§ 如果证据不可能存在,就会剔除大量样本
§ 考虑 P( Shape | blue ) 
§ 拒绝太多

 似然加权

 固定证据变量,仅对非证据变量进行抽样,并根据其与证据的似然性对每个样本进行加权。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值