概率的概念:使它成立的世界的概率之和。
无条件概率(unconditional probability)或 先验概率(prior probability) ——无任何其他信息下命题的信念度
证据——一些已经透露的信息
条件概率(conditional probability)或 后验概率(posterior probability)——给定证据下命题的信念度
边缘
边缘概率
只考虑x或只考虑xy。
对应加法法则,
边缘化(求和消元):通过加法合并折叠的行
§边缘分布是消除某个(些)变量的子表
联合概率
同时考虑xy。
乘法法则
有时已知条件分布,需要联合分布
链式法则
条件概率
联合概率除以边缘概率。
条件概率可以理解为对联合概率的归一化过程(结果相同)
贝叶斯规则
执果索因
用大写字母表示随机变量
事件是一组结果
独立性
两个变量独立,边缘独立、绝对独立:
另一种表示,y事件发生与否对x没有影响。
表示为:
条件独立性
给定Z,X条件独立于Y,
在给定z的情况下,y是否发生对x没有影响
条件独立可以简化链式法则
贝叶斯网络
贝叶斯网络 =(图)拓扑结构+局部条件概率
条件概率表CPT
每个节点都对应着一个CPT,指明了该变量与父节点之间概率依赖的数量关系。
父节点会影响子节点。
贝叶斯拓扑结构蕴含条件独立性
链式法则的简化,对于贝叶斯网络中的子节点,其概率仅依赖于所有的父节点。
当加入节点Xi,确保其父节点 “阻塞”了它与其他祖先节点的联系
给定Xi的父节点,每个变量条件独立于它的非子孙节点变量(即所有它之前的变量)
和之前的变量,没有关系,则不影响条件概率
子节点只受其父节点的影响。
性质:
节省了大量空间!局部CPT
还可以更快地回答查询
BNs 反映出真正的因果模式
BNs 不必是因果关系
有时域上不存在因果网络(尤其是缺少变量时)例如,变量Traffic(交通堵塞)和Drip(屋顶滴雨),反映相关性而非因果关系
拓扑结构可能恰好对因果结构进行编码
拓扑结构真正编码条件独立性
条件独立性判断
(重要,根据Active/inactive triplet来判断条件独立性)
----》
------》
有如下关系:每个子节点只收到自己父节点的影响,所以在父节点确定的情况下,他和前面的其他节点独立。
因果链
给定Y ,保证X独立于Z!!!!!!!!!!
当Y不是观测变量,值不确定,X会通过影响Y值进而影响Z值,具备流动性。
当Y是观测变量,值确定了,X就影响不到Z了。
因果链上的证据“阻塞”了影响。
共因链
观察原因可以阻断结果之间的影响。
x,z是受y影响的结果。
共果链
观察一种结果反而会激活可能原因之间的影响。
D-separation D-分离激活/非激活路径
只需要记住非激活的三种!
考虑从 X 到 Y 的所有(无向)路径,无激活路径 = 独立!
一条路径只要有一个三元组非激活那路径就处于非激活状态:
如果每个三元组都处于激活状态,那么路径处于激活状态:(不独立)
阻断一条路径只需要一个非激活的路径!如果要证明不独立,需要每个节点都是激活的!
示例:
检查所有的 Xi和 Xj之间的(无向!)路径。如果存在有一个或多个处于激活状态,则不能保证独立性
否则,如果所有路径都非激活,则保证独立性
阻断一条路径,只需要一个三元组非激活,但要证明两节点独立,需要阻断所有的路径
局部马尔可夫
(a)给定父节点(浅紫色区域中所示的Ui),节点X条件独立于它的非子孙节点(例如,Zi j)。
(b)给定它的马尔可夫毯(浅紫色区域:父结点、子结点以及子结点的父结点),节点X条件独立于网络中的所有其他节点。
朴素贝叶斯
共因链:
给定“原因” 变量时,“结果”变量不是严格独立,是条件独立。
给定“原因” 变量时,
“结果”变量不是严格独立,是条件独立。
朴素贝叶斯分类
贝叶斯网络的精确推理和近似推理
通过枚举进行推理
我们想要
h1,h2,……hr是其余的未知变量
评估树
枚举是低效的:重复计算,例如,对于每个e 的值计算P (j|a)P (m|a)。
使用评估树,存储值,不用进行重复计算。
计算过程自顶向下,沿着每条路径将值相乘,并在“+”节点上求和。
递归深度优先枚举:O(n)空间,O(dn)时间
求解过程:
选择任何已知值
连接所有因子,然后求出所有隐藏变量的总和
连接因子:
使用链式法则
消除、边缘化

多重链接,多重消除(=枚举推理)

变量消元
变量消元,边链接,边消除变元。
选择已知值,就可以消除除查询 + 证据之外的所有变量
标准化的过程就是求条件概率的过程。
P(L|+r)=P(+r,L)/P(+r)=P(+r,L)/[P(+r,+l)+P(+r,-l)]
采样
为什么要采样?学习:从未知分布中获取样本
推理:获取样本比计算正确答案更快(例如使用变量消除法)例如上面使用的朴素贝叶斯分类,根据已知来推概率会容易的多
先验采样
按照拓扑顺序依次对每个变量进行采样
对实际生成的样本进行计数来计算
拒绝采样
拒绝所有与证据不匹配的样本,剩余样本中统计频次,计算估计概率
似然加权
固定证据变量,仅对非证据变量进行抽样,并根据其与证据的似然性对每个样本进行加权。