CEEMDAN算法及其可视化python(完整代码和csv文件)

本文介绍了经验模态分解(EMD)、集合经验模态分解(EEMD)以及自适应噪声完备集合经验模态分解(CEEMDAN)。CEEMDAN具有完备性、快速计算速度和更好的模态分解效果,适用于非线性、非平稳信号的分析。文中提供了CEEMDAN的Python代码示例,并提到了相关Python库pyemd。
摘要由CSDN通过智能技术生成

 

          到这里大家对模态分解也了解到了一点,本人在这方面简单总结了一下CEEMDAN的由来和python的复现,由于相关代码已经有了现成的包,直接调用就可以,但对于python能力较弱的同学,可以直接参考我的这篇代码复现,仅供参考,数据不提供全部。

1:EMD(经验模态分解)

        经验模态分解(Empirical Mode Decomposition,简称EMD))方法被认为是2000年来以傅立叶变换为基础的线性和稳态频谱分析的一个重大突破,该方法是依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅里叶分解与小波分解方法具有本质性的差别。正是由于这样的特点,EMD 方法在理论上可以应用于任何类型的信号的分解, 因而在处理非平稳及非线性数据上,具有非常明显的优势,适合于分析非线性、非平稳信号序列,具有很高的信噪比。所以,EMD方法一经提出就在不同的工程领域得到了迅速有效的应用,例如用在海洋、大气、天体观测资料与地震记录分析、机械故障诊断、密频动力系统的阻尼识别以及大型土木工程结构的模态参数识别方面。

         对于我们采集到的信号/数据,其中可能会蕴含着非常复杂的物理过程或经济过程,以及各种类型的干扰信息,而对于这些信息我们可能没有相关认知或者只有定性的了解。为了更清晰地分析对象的组成,我们要“把一个信号从一个整体,从它原始的采样表示变成在一组有意义的基上,或者是有特定意义的 '描述'上进行展开,而这种展开能够提供更加丰富的信号里面的信息和结构。这就是所谓信号的分离。”再通俗一点,EMD就像一台机器,把一堆混在一

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值