AI视频领域的DeepSeek—阿里万相2.1图生视频

让我们一同深入探索万相 2.1 ,本文不仅介绍其文生图和文生视频的使用秘籍,还将手把手教你如何利用它实现图生视频。

如下为生成的视频效果(我录制的GIF动图)

如下为输入的图片

目录

1.阿里巴巴全面开源旗下视频生成模型万相2.1模型

2.手把手教你图生视频


1.阿里巴巴全面开源旗下视频生成模型万相2.1模型

2月25日晚,阿里巴巴宣布全面开源旗下视频生成模型万相2.1模型。据介绍,此次开源基于Apache2.0协议,14B和1.3B两个参数规格的全部推理代码和权重全部开源,同时支持文生视频和图生视频任务,全球开发者可在Github、HuggingFace和魔搭社区下载体验。

通义万相是阿里云通义系列AI绘画创作大模型,可辅助人类进行图片创作,于2023年7月7日正式上线。在2024年9月19日的阿里云栖大会上,阿里发布了通义万相视频生成大模型。该模型可以生成影视级高清视频,而且更能听懂中国话,被外界称为“最懂中国风”的视频大模型。今年1月初,通义万相视频生成模型宣布升级至2.1版,凭借着优秀的表现,在权威评测榜单VBench中登上榜首。

阿里云旗下视觉生成基座模型万相2.1(Wan)重磅开源,此次开源采用最宽松的Apache2.0协议,14B和1.3B两个参数规格的全部推理代码和权重全部开源,同时支持文生视频和图生视频任务,全球开发者可在Github、HuggingFace和魔搭社区下载体验。

据介绍,14B万相模型在指令遵循、复杂运动生成、物理建模、文字视频生成等方面表现突出,在权威评测集VBench中,万相2.1以总分86.22%的成绩大幅超越Sora、Luma、Pika等国内外模型,稳居榜首位置。1.3B版本测试结果不仅超过了更大尺寸的开源模型,甚至还接近部分闭源模型,同时能在消费级显卡运行,仅需8.2GB显存就可以生成高质量视频,适用于二次模型开发和学术研究。

万相2.1以总分86.22%的成绩稳居VBench榜单第一

在算法设计上,万相基于主流DiT架构和线性噪声轨迹Flow Matching范式,研发了高效的因果3D VAE、可扩展的预训练策略等。以3D VAE为例,为了高效支持任意长度视频的编码和解码,万相在3D VAE的因果卷积模块中实现了特征缓存机制,从而代替直接对长视频端到端的编解码过程,实现了无限长1080P视频的高效编解码。此外,通过将空间降采样压缩提前,在不损失性能的情况下进一步减少了29%的推理时内存占用。

阿里通义万相2.1文生图和文生视频可以查看如下链接

快速高效使用——阿里通义万相2.1的文生图、文生视频功能-CSDN博客https://archie.blog.csdn.net/article/details/146015609?spm=1001.2014.3001.5502接下来手把手教你图生视频

2.手把手教你图生视频

首先登录如下云服务器

https://cloud.lanyun.net/#/registerPage?promoterCode=11f606c51ehttps://cloud.lanyun.net/#/registerPage?promoterCode=11f606c51e进入后,点击页面上栏中的“应用市场”。

点击阿里万相2.1图生视频的部署按钮 

在弹出的窗口中,选择GPU型号4090 

等待 创建空间成功

然后点击快速启动应用 

跳转到如下界面 

 1)创建工作流模板,工作流 >> 浏览模板

选择480P模板

 2)上传图片

输入想要生成的视频信息 , 点击最下方的执行

3)查看队列,视频生成中,需等待几分钟

 4)查看生成视频

### 阿里通义2.1 版本特性 阿里云于2025年225日深夜宣布开源视频成模型通义2.1,此版本提供了两个主要参数规模的选择:文视频-1.3B和文视频-14B。这两个版本旨在满足不同的应用场景和技术需求[^1]。 #### 文视频-1.3B 和 文视频-14B 的特点 - **文视频-1.3B**:适合资源有限但希望尝试高质量视频成的个人开发者或小型团队。 - **文视频-14B**:针对更复杂、更高精度的任务设计,适用于专业级应用开发以及研究机构。 ### 使用说明 为了方便全球范围内的开发者获取并利用这些先进的技术成果,官方已开放多个平台供下载: - GitHub - Hugging Face - 魔搭社区 用户可以根据自己的偏好选择合适的渠道来访问源码及关文档资料。 对于想要深入了解如何操作该工具的人来说,建议前往[通义官方网站](https://wanxiang.aliyun.com/)进行注册申请账号,并查阅详细的API接口指南和其他支持材料[^2]。 ### 更新内容 此次发布的通义2.1不仅实现了完全开源共享,在性能优化方面也取得了显著进步,具体表现在以下几个方面: - 提升了像到视频转换的质量; - 增强了自然语言处理能力,使得描述文字能够更加精准地映射成视觉效果; - 改进了多模态融合机制,从而更好地理解输入数据之间的关联性; 此外,还修复了一些之前存在的Bug,并增加了新的功能模块以扩展系统的适用性和灵活性。 ```python import torch from transformers import AutoModelForVideoGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path_to_model") # 替换为实际路径 model = AutoModelForVideoGeneration.from_pretrained("path_to_model") text_input = tokenizer("A beautiful sunset over the ocean", return_tensors="pt") video_output = model.generate(**text_input) print(video_output.shape) # 输出视频张量大小 ```
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿齐Archie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值