AI视频领域的DeepSeek—阿里万相2.1图生视频

让我们一同深入探索万相 2.1 ,本文不仅介绍其文生图和文生视频的使用秘籍,还将手把手教你如何利用它实现图生视频。

如下为生成的视频效果(我录制的GIF动图)

如下为输入的图片

目录

1.阿里巴巴全面开源旗下视频生成模型万相2.1模型

2.手把手教你图生视频


1.阿里巴巴全面开源旗下视频生成模型万相2.1模型

2月25日晚,阿里巴巴宣布全面开源旗下视频生成模型万相2.1模型。据介绍,此次开源基于Apache2.0协议,14B和1.3B两个参数规格的全部推理代码和权重全部开源,同时支持文生视频和图生视频任务,全球开发者可在Github、HuggingFace和魔搭社区下载体验。

通义万相是阿里云通义系列AI绘画创作大模型,可辅助人类进行图片创作,于2023年7月7日正式上线。在2024年9月19日的阿里云栖大会上,阿里发布了通义万相视频生成大模型。该模型可以生成影视级高清视频,而且更能听懂中国话,被外界称为“最懂中国风”的视频大模型。今年1月初,通义万相视频生成模型宣布升级至2.1版,凭借着优秀的表现,在权威评测榜单VBench中登上榜首。

阿里云旗下视觉生成基座模型万相2.1(Wan)重磅开源,此次开源采用最宽松的Apache2.0协议,14B和1.3B两个参数规格的全部推理代码和权重全部开源,同时支持文生视频和图生视频任务,全球开发者可在Github、HuggingFace和魔搭社区下载体验。

据介绍,14B万相模型在指令遵循、复杂运动生成、物理建模、文字视频生成等方面表现突出,在权威评测集VBench中,万相2.1以总分86.22%的成绩大幅超越Sora、Luma、Pika等国内外模型,稳居榜首位置。1.3B版本测试结果不仅超过了更大尺寸的开源模型,甚至还接近部分闭源模型,同时能在消费级显卡运行,仅需8.2GB显存就可以生成高质量视频,适用于二次模型开发和学术研究。

万相2.1以总分86.22%的成绩稳居VBench榜单第一

在算法设计上,万相基于主流DiT架构和线性噪声轨迹Flow Matching范式,研发了高效的因果3D VAE、可扩展的预训练策略等。以3D VAE为例,为了高效支持任意长度视频的编码和解码,万相在3D VAE的因果卷积模块中实现了特征缓存机制,从而代替直接对长视频端到端的编解码过程,实现了无限长1080P视频的高效编解码。此外,通过将空间降采样压缩提前,在不损失性能的情况下进一步减少了29%的推理时内存占用。

阿里通义万相2.1文生图和文生视频可以查看如下链接

快速高效使用——阿里通义万相2.1的文生图、文生视频功能-CSDN博客https://archie.blog.csdn.net/article/details/146015609?spm=1001.2014.3001.5502接下来手把手教你图生视频

2.手把手教你图生视频

首先登录如下云服务器

https://cloud.lanyun.net/#/registerPage?promoterCode=11f606c51ehttps://cloud.lanyun.net/#/registerPage?promoterCode=11f606c51e进入后,点击页面上栏中的“应用市场”。

点击阿里万相2.1图生视频的部署按钮 

在弹出的窗口中,选择GPU型号4090 

等待 创建空间成功

然后点击快速启动应用 

跳转到如下界面 

 1)创建工作流模板,工作流 >> 浏览模板

选择480P模板

 2)上传图片

输入想要生成的视频信息 , 点击最下方的执行

3)查看队列,视频生成中,需等待几分钟

 4)查看生成视频

### 通义2.1本地部署教程和配置指南 #### 部署环境准备 为了成功部署通义2.1,在本地环境中需预先安装并配置必要的软件包和支持库。通常情况下,这包括但不限于Python解释器及其依赖项、虚拟环境管理工具如`virtualenv`或`conda`等。 对于操作系统的要求,建议采用Linux发行版或是具备良好兼容性的Windows子系统(Linux)版本[^1]。 ```bash sudo apt-get update && sudo apt-get install python3-pip virtualenv -y ``` #### 获取源码与初始化项目结构 通过官方渠道下载最新发布的通义2.1压缩包文件,并解压至目标目录下;或者克隆GitHub仓库中的对应分支获取最新的开发状态副本。完成之后进入工程根路径执行初始化命令创建独立运行所需的全部基础架构。 ```bash git clone https://github.com/your-repo/tongyi-wanxiang.git cd tongyi-wanxiang virtualenv venv --python=python3 source ./venv/bin/activate pip install -r requirements.txt ``` #### 数据集加载与预处理 根据具体应用场景的不同,可能还需要额外的数据准备工作。这部分工作涉及数据清洗、转换格式等一系列操作以确保输入符合预期标准。部分大型语言模型可能会自带训练好的权重参数可以直接用于推理阶段而无需重新训练整个网络结构。 #### 启动服务端口监听 当一切就绪后即可启动API服务器对外提供RESTful接口访问权限。默认情况下会绑定到localhost上的8080端口上等待客户端发起请求连接。如果希望开放给外部网络则需要调整应的防火墙策略允许特定IP地址范围内的设备接入。 ```bash export FLASK_APP=wsgi.py flask run --host=0.0.0.0 --port=8080 ``` #### 测试验证功能正常性 最后一步是对刚刚搭建起来的服务实例进行全面的功能测试,确认各个模块之间交互无误且能够稳定输出期望的结果。可以借助Postman这类形界面HTTP调试工具发送模拟查询指令观察返回值是否合理有效。 ```json { "prompt": "你好世界", "max_tokens": 50, "temperature": 0.7 } ```
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿齐Archie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值