书生浦语大模型实战营——第一课: InternLM大模型全链路开源体系

本文讨论了专用模型和通用大模型的区别,前者如ImageNet用于图像分类,后者如ChatGPT处理多种任务。文章涉及大数据集(如2TB的书生万卷)预训练、InternLM-Train、微调方法(如全参数和部分参数调整)、部署工具LMDeploy以及测评平台OpenCompass。最后提到langchain的学习对未来可能的应用前景。
摘要由CSDN通过智能技术生成

专用模型:针对特定任务,特定场景,一个模型解决一个问题。eg:ImageNet的图像分类

通用大模型:一个模型应对多种任务。eg:ChatGPT

  • 数据

书生万卷-2TB数据,涵盖多种模态与任务

  • 预训练

InternLM-Train

  • 微调

全参数微调或部分参数微调。

XTuner

  • 部署

LMDeploy

  • 测评

OpenCompass

  • 应用

补充一下:学完课程后对langchain的学习,可能之后会用到!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值