书生浦语大模型实战营第二课: 轻松玩转书生·浦语大模型趣味 Demo

1. 大模型以及InternLM 模型的简介(总结和自己的思考)

  • 什么是大模型:

  • 大模型是指在机器学习和人工智能领域中,拥有庞大参数数量、强大计算能力和规模的模型。它们利用大量数据进行训练,参数数量可达数十亿或数千亿。这些模型的崛起得益于数据增长、计算能力提升和算法优化。它们在各种任务中表现出卓越性能,如自然语言处理、计算机视觉和语音识别,通常采用深度神经网络结构如Transformer、BERT、GPT等。
  • 大模型的优势在于能够捕捉和理解数据中更复杂、抽象的特征和关系,提高泛化能力,甚至在未经领域特定数据训练的情况下表现出色。然而,它们也面临挑战,包括巨大的计算资源需求、高昂的训练成本、对大规模数据的依赖以及模型可解释性等问题。因此,在应用和发展大模型时需要在性能、成本和道德等多个方面进行权衡和考虑。
  • InternLM 模型全链条开源:

  • InternLM是一个开源的轻量级训练框架,旨在支持大模型训练而无需大量依赖。该框架通过单一的代码库,支持在拥有数千个GPU的大型集群上进行预训练,并在单个GPU上进行微调,同时实现卓越性能优化。在使用1024个GPU进行训练时,InternLM能够实现近90%的加速效率。
  • 此外,上海人工智能实验室已经基于InternLM训练框架发布了两个开源的预训练模型:InternLM-7B和InternLM-20B。另外,Lagent是一个轻量级、开源的基于大语言模型的智能体框架,它支持用户快速将大语言模型转变为多种类型的智能体,并提供一些典型工具来赋能大语言模型。通过Lagent框架,可以更好地发挥InternLM的性能潜力,为构建多种类型的智能体提供了便捷的解决方案。

2. InternLM-Chat-7B 智能对话 Demo(操作流程以及遇到的问题)

  • 连服务器
  • 进开发机
  • conda个环境and pip一些package
  • 下载模型(分为两种:复制粘贴ormodelscope )
  • mkdir -p /root/model/Shanghai_AI_Laboratory
    cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
  • 准备代码:
  • cd /root/code
    git clone https://gitee.com/internlm/InternLM.git
  • cd InternLM
    git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17
  • 新建cli_demo.py
  • 运行demo python /root/code/InternLM/cli_demo.py
  • 遇到的问题:ssh链接了两次导致错误

使用7b生成300字的小故事

  • 终端版本

  • web_demo版本

3. Lagent 智能体工具调用 Demo

  • 连服务器
  • 进开发机
  • conda个环境and pip一些package
  • 下载模型(分为两种:复制粘贴ormodelscope )
  • mkdir -p /root/model/Shanghai_AI_Laboratory
    cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
  • 准备代码:
  • cd /root/code
    git clone https://gitee.com/internlm/InternLM.git
  • cd InternLM
    git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17
  • 替换这段代码
  • /root/code/lagent/examples/react_web_demo.py
  • 运行demo
  • streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

完成 Lagent 工具调用 Demo 创作部署

4. 浦语·灵笔图文理解创作 Demo

  • 连服务器(得换卡昂!)
  • 进开发机
  • conda个环境and pip一些package
  • 下载模型(分为两种:复制粘贴ormodelscope )
  • mkdir -p /root/model/Shanghai_AI_Laboratory
    cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
  • 准备代码:
  • cd /root/code
    git clone https://gitee.com/internlm/InternLM-XComposer.git
  • cd /root/code/InternLM-XComposer
    git checkout 3e8c79051a1356b9c388a6447867355c0634932d  # 最好保证和教程的 commit 版本一致
  • 运行demo
  • cd /root/code/InternLM-XComposer
    python examples/web_demo.py  \
        --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
        --num_gpus 1 \
        --port 6006

完成浦语·灵笔的图文理解及创作部署

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值