云雾网络专题

无线网

1G 和 2G 时代,基站是一体化的,每个基站自成体系,基站及配套设施全 部位于机房内,基站通过馈线与铁塔上的天线相连;到 3G 时代,将传统一体 化基站分为两部分,即 RRU 和 BBU。RRU 位于室外,BBU 位于室内,RRU 与 BBU 之间通过光纤连接,每个 BBU 可以带多个(3 ~ 4 个)RRU,这种方 式即为 D-RAN(分布式无线接入网)。

在5G网络中,传统的BBU(基带处理单元)功能被重构为CU(Centralized Unit,集中单元)和DU(Distributed Unit,分布单元)两个功能实体。这种架构调整旨在优化网络性能,更好地适应5G多样化场景的需求

缩写集中

BBU:是基站的核心处理单元,主要负责基带信号的处理、控制和数据传输。
RRU:是射频拉远单元,主要负责射频信号的收发和处理。
AAU(Active Antenna Unit,有源天线单元):是RRU的升级版本,集成了天线和射频处理功能,支持大规模MIMO(多输入多输出)和波束赋形等技术。
Operation and Maintenance Center,操作维护中心
NGFI(Next Generation Fronthaul Interface,下一代前传接口)是一种为满足5G及未来无线网络需求而设计的新型前传网络架构,旨在解决传统CPRI接口在带宽、延迟和灵活性方面的局限性
CU 设备采用通用平台实现,这样不仅可支持无线网功能,还具备了支持核心 网功能和边缘应用的能力
DU 设备可采用专用设备平台或通用 + 专用混合平 台实现,支持高密度数学运算能力。
CoMP(协作多点传输)
在这里插入图片描述

云计算

云的本质到底是啥,是功能与硬件的解耦集中化。这一点如果没有理解到基带的处理模式,是不知道要干什么的。

,传统的云计算架构本质上是集中式的,难以满足位于网络边缘的大量终端设备对移动性、低时延、实时性、位置感知服务的需求。由于云数据中心往往距离终端用户较远,超长距离的数据传输不仅会占用大量网络带宽,产生大量传输能耗,而且服务响应时延增大,严重影响用户体验。其次,经由互联网远距离传输到云数据中心的过程中,数据的安全性无法保证。此外,海量数据集中在云端处理,加重了云端服务器的负担,对云端服务器的软硬件条件要求也较高。因此,传统云计算架构无法支撑物联网中越来越多的时延敏感型业务的处理。

C-RAN

C-RAN 是根据现网条件和技术进步的趋势,提出的新型无线接入网构架, 是基于集中化处理(Centralized Processing)、协作式无线电(Collaborative Radio)和实时云计算构架(Real-time Cloud Infrastructure)的绿色无线接 入网构架(Clean System)。其本质是通过实现减少基站机房数量,减少能耗, 采用协作化、虚拟化技术,实现资源共享和动态调度,提高频谱效率,以达到 低成本、高带宽和灵活度的运营。

真正的雾计算

FogNet 的最大特
点在于不同的设备之间可以直接通信,例如,FogNet 中的用户可以释放自己的一些计算/存
储能力以支持其相邻设备;

雾计算主要具有以下特点。

a) 支持实时互动,更低时延和能耗。
b) 更低的带宽需求,缓解海量设备连接云端时引起的拥塞。
c) 数据的分布式处理,降低海量数据存储需求。
d) 设备位置精确感知,支持更大范围的移动性。
e) 支持异构性,支持多样化的异构软硬件设备。

云雾计算对比

在这里插入图片描述
雾接入点同时作为物联网接入点,首先把传感器采集的数据进行过滤、分析,进行任务的分解,哪些业务可以在本节点进行处理,哪些业务需要分发给其他雾接入点协作处理,哪些业务需要回传至云计算中心进行处理。另外雾接入点也可以作为云端数据和终端数据的缓存,可以进行本地流量的卸载,减少对传输带宽的需求,更好地满足了移动应用高流量和低时延的需求。云计算中心的优势保留,关注于雾层上传的全局性数据以及处理高延迟长周期的大数据应用。

在这里插入图片描述

云雾网的本质

云的本质是集中,雾的本质是分布。雾计算是对云计算的补充。其本身就构成了一个服务整体
云雾计算必须做业务区分,DoS必须做目的区分

PPT汇报准备:

无线网云计算的由来:C-RAN

雾计算的由来:embb

雾计算(Fog Computing)是云计算(Cloud Computing)的延伸概念,主要用于管理来自传感器和边缘设备的数据,将数据、(数据)处理和应用程序集中在网络边缘的设备中,而不是全部保存在云端数据中心
在这里插入图片描述
尽量减少延迟:当您试图阻止生产线关闭或恢复电气服务时,毫秒就很重要。 分析收集数据的设备附近的数据可以避免灾难和级联系统故障之间的差异。

分析收集数据的设备附近的数据可以避免灾难和级联系统故障之间的差异。

Analyzing data close to the device that collected the data can make the difference between averting disaster and a cascading system failure.

●节省网络带宽:海上石油每周产生500 GB的数据。商业飞机每30分钟的飞行就会产生10TB。将大量数据从数千或数十万个边缘设备传输到云是不现实的。也不是必要的,因为许多关键分析不需要云规模处理和存储。

●解决安全问题:物联网数据需要在运输和休息时都受到保护。这需要在整个攻击过程中进行监视和自动响应:在之前,期间和之后。

●可靠运行:物联网数据越来越多地用于影响公民安全和关键基础设施的决策。基础设施和数据的完整性和可用性不容置疑。

●在具有不同环境条件的广泛地理区域收集和保护数据:物联网设备可以分布在数百平方英里以上。部署在道路,铁路,公用事业现场变电站和车辆等恶劣环境中的设备可能需要加固。在受控的室内环境中,设备并非如此。

●将数据移动到最佳处理位置:哪个地方最好取决于需要多快决定。对时间敏感的决策应该更接近产生和处理数据的事物。相比之下,历史数据的大数据分析需要云计算和存储资源。

5G云雾交互

在这里插入图片描述

参考:Experimental Demonstration of Distributed Multi-tenant Cloud/Fog and Heterogeneous SDN/NFV Orchestration for 5G Services

云雾协同

云雾节点分工不同:
云端设备负责存储数据、处理大规模数据和训练模型。边缘节点负责实时数据采集、处理并传输给云端,故云端和边端之间的协同十分重要。

旨在充分发挥两者的互补优势,提升数据处理效率、降低延迟并增强系统的安全性和可靠性。

云为什么不能和雾分开?

云雾计算本身就是一个场景整体,只有雾业务不完整,所以不能分。先有云实现软硬解耦集中,雾是云的补充增强。其主要推动逻辑是隐私和时延的划分。

协议不完整,业务流程不完整。

资源各有优势,优势互补,分工不同,只有雾资源不够。

视频缓存业务

云雾计算是一个场景整体,云是业务的主要承担方,是云雾计算的算力后盾,是业务提供方的控制中枢,是业务流程的协议重要一环,是业务决策的重要影响因素。

参考文献

https://ieeexplore.ieee.org/document/8114560

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值