动态规划算法之矩阵链乘法详细解读(附带Java代码解读)

矩阵链乘法(Matrix Chain Multiplication)问题是动态规划中的经典问题之一。该问题的核心目标是在给定的矩阵链中,找到一种最优的乘法顺序,使得计算矩阵乘积的标量乘法次数最小。

1. 问题描述

给定一个矩阵链 (A1,A2,...,An),要求计算从第一个矩阵 A1​ 到最后一个矩阵 An 的乘积 A1×A2×...×An。矩阵乘法的运算具有结合性,但不具有交换性,因此可以通过改变矩阵相乘的顺序来优化计算量。

例如:

  • 对于三个矩阵 A1​、A2 和 A3​,可以有两种乘法顺序:
    • (A1×A2)×A3
    • A1×(A2×A3)

每种不同的乘法顺序,其计算代价不同,计算代价取决于矩阵的维数。

2. 矩阵乘法的计算代价

矩阵 A 的维数为 p×q,矩阵 B的维数为 q×r,则矩阵乘法 A×B 的计算代价为 p×q×r 次标量乘法。

因此,矩阵链乘法的计算代价依赖于矩阵相乘的顺序,不同的乘法顺序可能导致不同的总计算代价。

3. 动态规划解法思路

对于矩阵链 A1,A2,...,An,我们用 p[] 表示矩阵的维数,其中:

  • 矩阵 A1A_1A1​ 的维数为 p0×p1​
  • 矩阵 A2A_2A2​ 的维数为 p1×p2
  • ...
  • 矩阵 An 的维数为 pn−1×pn
动态规划的核心思路:
  1. 定义一个二维数组 m[i][j],表示计算矩阵链 Ai×Ai+1×...×Aj的最少标量乘法次数。
  2. 我们希望通过不同的分割方式,将矩阵链问题分解为多个子问题。
  3. 每个子问题通过最优子结构解法来构造原问题的最优解。
状态转移方程:

m[i][j]=i≤k<jmin​{m[i][k]+m[k+1][j]+pi−1​×pk​×pj​}

其中:

  • m[i][k] 是矩阵链 Ai×Ai+1×...×Ak 的最优乘法次数
  • m[k+1][j] 是矩阵链 Ak+1×...×Aj的最优乘法次数
  • pi−1×pk×pj 是将两部分矩阵相乘的代价
初始条件:
  • 如果 i==j,则 m[i][i] = 0,因为只有一个矩阵时不需要任何乘法操作。

4. 动态规划解法代码实现

下面是使用动态规划求解矩阵链乘法的 Java 代码:

public class MatrixChainMultiplication {

    // 矩阵链乘法的动态规划方法
    public static int matrixChainOrder(int[] p) {
        int n = p.length - 1; // 矩阵数量
        int[][] m = new int[n][n]; // 存储最少计算次数的表

        // 初始化对角线,即一个矩阵乘法的计算次数为0
        for (int i = 0; i < n; i++) {
            m[i][i] = 0;
        }

        // l是链的长度,从2开始
        for (int l = 2; l <= n; l++) {
            for (int i = 0; i < n - l + 1; i++) {
                int j = i + l - 1;
                m[i][j] = Integer.MAX_VALUE; // 先初始化为最大值

                // 计算m[i][j]的最优分割点
                for (int k = i; k < j; k++) {
                    // 计算m[i][k] + m[k+1][j] + 乘法代价
                    int q = m[i][k] + m[k+1][j] + p[i] * p[k+1] * p[j+1];
                    if (q < m[i][j]) {
                        m[i][j] = q;
                    }
                }
            }
        }

        // 返回最终计算的最少乘法次数
        return m[0][n-1];
    }

    public static void main(String[] args) {
        // 示例维度数组,表示三个矩阵 A1(10x30), A2(30x5), A3(5x60)
        int[] p = {10, 30, 5, 60};

        System.out.println("Minimum number of multiplications is " + matrixChainOrder(p));
    }
}

5. 代码详解

5.1 输入与输出
  • 输入是一个整数数组 p[],它表示矩阵的维数。其中 p[i] 表示第 i 个矩阵的行数,p[i+1] 表示第 i 个矩阵的列数。
  • 输出是最少的标量乘法次数。
5.2 核心步骤
  1. 初始化m[i][i] = 0,表示单个矩阵不需要乘法。
  2. 递推求解:通过循环链的长度 l,逐步求解最优的矩阵链乘法顺序。
  3. 分割矩阵链:对于每个子问题,通过不同的分割点 k,计算分割后的两个部分各自的最优解,最后加上两个部分合并的代价。
5.3 时间复杂度
  • 时间复杂度O(n^3),其中 n 是矩阵的个数。因为我们需要计算所有可能的子问题,并对每个子问题进行分割和计算。
  • 空间复杂度O(n^2),需要一个二维数组 m[][] 来存储中间计算结果。

6. 举例说明

示例:

假设有 3 个矩阵 A1、A2​、A3​,其维数分别为 10×30、30×5、5×60,

p[] = {10, 30, 5, 60}

  • 方案 1:先计算 A1×A2​,再与 A3​ 相乘。

    • 计算 A1×A2​ 的代价:10×30×5=1500
    • 计算 A3×(A1×A2)的代价:10×5×60=3000
    • 总代价:1500+3000=4500
  • 方案 2:先计算 A2×A3​,再与 A1​ 相乘。

    • 计算 A2×A3的代价:30×5×60=9000
    • 计算 A1×(A2×A3) 的代价:10×30×60=18000
    • 总代价:9000+18000=27000

从计算中可以看到,方案 1方案 2 的代价小得多,选择方案 1 是最优的。

7. 总结

矩阵链乘法问题通过动态规划求解,避免了枚举所有可能的乘法顺序。其主要思想是将问题分解为多个子问题,并通过最优子结构的递归解法,找到最小的矩阵乘法次数。这一算法在计算机图形学、科学计算和数据库查询优化中有广泛应用。

  • 28
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值