基于生存结局(生存分析/COX回归)的中介效应分析

本文介绍了如何使用R包mediation和mets进行生存结局的中介效应分析,涉及连续变量、分类变量的中介效应模型建立及在线验证。通过示例演示了线性模型和probit模型的构建,并提到了共线性问题对结果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mediation analysis with a time-to-event outcome

近期在研究生存结局的中介效应分析,总结了目前国内外用于生存结局中介效应分析的2个R包和一个在线分析网站,可以进行如下第一个表中的所有变量类型的中介效应分析;本文着重介绍连续变量、分类变量和生存资料的中介效应分析,并进行示例演示,有需要的小伙伴可以往下看。

想必大家看到这篇文章时,对中介效应的基础知识已经有了很多的了解,我们在这里就不做赘述了,直接在R中进行演示。

首先,先安装和加载目前用于生存结局中介效应分析的的两个主流R包:

install.packages("mediation")
install.packages("mets")
library("mediation")
library(
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无视小神仙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值