生存数据如何做中介分析?中国学者用NHANES数据库发文一区top(IF=8.5)

4aa3668218b197adaf00123ff1b61077.png

 引言

网上的教程这么多,你真的了解生存数据的中介分析到底该怎么做吗?今天分享一篇中国学者发表的一区top文章,研究者们基于NHANES数据库,结合多种统计学方法详细描述了中介效应分析的过程,方法严谨,结构清晰,值得借鉴。

接下来,让我们一起看看具体该如何实现吧!

甘油三酯-葡萄糖指数(TGI)作为一个可靠且易于获取的指标,可有效反映人体胰岛素抵抗程度。而幽门螺杆菌作为一种常见的致病菌,可通过多种途径影响人体健康。

有研究表明,幽门螺杆菌感染(幽门螺杆菌免疫球蛋白G(IgG)抗体阳性)可能会加剧人体胰岛素抵抗,从而促进心血管疾病(CVD)的发生和发展。

2024年12月18日,中国学者用NHANES数据库,在期刊Cardiovascular Diabetology(医学top一区,IF=8.5)发表题为:“Relationships among Helicobacter pylori seropositivity, the triglyceride-glucose index, and cardiovascular disease: a cohort study using the NHANES database”的研究论文,旨在探讨了幽门螺杆菌IgG抗体阳性、TGI和CVD风险之间的关联,以及TGI在这一关联中的中介作用。

研究结果表明,TGI在幽门螺杆菌增加心血管疾病(CVD)风险和死亡风险的过程中,均发挥了显著的中介作用。同时,研究还发现在一般人群中,TGI≥第75个百分位数且感染幽门螺杆菌者患CVD风险最高。而在CVD患者中,该特征的人群死亡风险最高。

4e6f5f7b20a1bb628568df12892277be.png

本公号回复“ 原文”即可获得文献PDF等资料。想用NHANES发文,看看这个可一键提取和分析数据的NHANES  Online平台!如感兴趣请联系郑老师团队,微信号:aq566665

研究团队基于美国国家健康与营养调查(NHANES)III(1988-1994)和NHANES数据库1999-2000年的数据,经过纳排,最终纳入了9,399名符合条件的年龄≥18岁的参与者,平均年龄为45岁,50.5%为女性。

  • 其中,4,488名(47.75%)为幽门螺杆菌IgG抗体阳性,3,934名(41.86%)被诊断为C

在R语言中分析Nhanes(全国健康和营养检查研究)数据库中的血脂数据,通常需要几个步骤: 1. **安装必要的库**:首先确保已经安装了`tidyverse`(包括`dplyr`, `ggplot2`, `readr`等)和`NHANES`包,用于处理NHANES数据。可以使用`install.packages()`命令安装它们。 ```R install.packages(c("tidyverse", "NHANES")) ``` 2. **加载数据**:使用`NHANES::load_nhanes()`函数从数据库中导入数据集。例如,如果你感兴趣的是成年人的数据,你可以加载特定年份的数据,并选择相关的血脂变量如`serum_chol`(血清胆固醇)和`triglycerides`(甘油三酯)。 ```R library(NHANES) nhanes_data <- load_nhanes(year = c("2015-2016"), data_type = "survey", variable = c("serum_chol", "triglycerides")) ``` 3. **数据清洗**:检查并处理缺失值、异常值和重复数据。可以使用`dplyr`中的`filter()`, `select()`, 和 `na.omit()` 等函数。 ```R nhanes_data_clean <- nhanes_data %>% filter(!is.na(serum_chol) & !is.na(triglycerides)) %>% distinct() ``` 4. **描述性统计**:对血脂变量进行描述性统计分析,了解其基本分布情况。 ```R summary(nhanes_data_clean[, c("serum_chol", "triglycerides")]) ``` 5. **探索性数据分析**:创建散点图或直方图,分析两个血脂指标之间的关联,以及与其他变量的关系(如果有其他感兴趣的协变量)。 ```R ggplot(nhanes_data_clean, aes(x = serum_chol, y = triglycerides)) + geom_point() ``` 6. **建立模型**:如果想要进行更深入的统计建模,比如线性回归分析,可以选择血脂作为因变量,其他特征作为自变量。 ```R model <- lm(triglycerides ~ serum_chol + age + sex, data = nhanes_data_clean) summary(model) ``` 7. **结果解读与报告**:解释模型的结果,比如系数的意义,p值,以及是否存在显著的相关性或预测能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值