基础动态规划——背包问题

背包问题分为01背包问题和完全背包问题,背包问题用知乎某答主的话讲就是:一个小偷背了一个背包潜进了金店,包就那么大,他如何保证他背出来所有物品加起来的价值最大

动态规划的原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

0-1背包问题

首先对于0-1背包问题,我们需要知道的是:每一个物品只有1个,要么全拿,要么不拿,最后使得拿到的物品的总价值最大。

问题描述:

有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。


基本思路 :


这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

tab[i][j] = max(tab[i-1][j-weight[i]]+value[i],tab[i-1][j]) ({i,j|0<i<=n,0<=j<=total})


其中i表示放第i个物品,j表示背包所容纳的重量,那么tab[i-1][j-weight[i]]+value[i]表示放入第i物品,刚开始接触会有疑问,tab[i-1][j-weight[i]]这个值,可以这样理解:tab[i-1][j]为装到上一个物品在背包j容量时的最佳值,那么如果我要求在j容量的时候放入现在的i物品的价值,那么是不是要先得到容量为(j-weight[i])时候的价值,即先得到 tab[i-1][j-weight[i]] ,所以 tab[i-1][j-weight[i]]+value[i] 为放入第i物品的价值; tab[i-1][j] 就是不放入第i个物品。
 

核心代码

for(i = 1; i <= n; i++)
    {
        for(j = 0; j <= W; j++)
        {
            if(j < w[i]){
                 dp[i][j]  = dp[i-1][j];
            } else {
                 dp[i][j] =  max(dp[i-1][j], dp[i-1][j - w[i]] + v[i]);
            }
        }
    }

优化后的代码

    for(i = 1; i <= n; i++)
    {
     for(j = W; j >= w[i]; j--)
        dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
    }

C 代码

#include <stdio.h>
int c[10][100]={0};
 
void knap(int m,int n){
 
    int i,j,w[10],p[10];
    for(i=1;i<n+1;i++)
        scanf("%d,%d",&w[i],&p[i]);
    for(j=0;j<m+1;j++)
        for(i=0;i<n+1;i++)
    {
        if(j<w[i])
        {
            c[i][j]=c[i-1][j];
            continue;
        }else if(c[i-1][j-w[i]]+p[i]>c[i-1][j])
            c[i][j]=c[i-1][j-w[i]]+p[i];
        else
            c[i][j]=c[i-1][j];
    }  
}            
int main(){
    int m,n;int i,j;
    printf("input the max capacity and the number of the goods:\n");
    scanf("%d,%d",&m,&n);
    printf("Input each one(weight and value):\n");
    knap(m,n);
    printf("\n");
   for(i=0;i<=n;i++)
        for(j=0;j<=m;j++)
       {
     printf("%4d",c[i][j]);
    if(m==j) printf("\n");
    }
}

完全背包问题

问题描述:

有 N 种物品和一个容量为 V 的背包,每种物品都有无限件可用。第 i 种物品的费用是 c[i],价值是 w[i] 。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路:

这个问题非常类似于 01背包问题,所不同的是每种物品都有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取 0 件、取 1 件、取 2 件 ......等很多种。如果仍然按照解 01背包时的思路,令 f[i][v] 表示前 i 种物品恰放入一个容量为 v 的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程

 C++代码

 
#include <iostream>
#include <algorithm>
#define N 1002
using namespace std;
 
int f[N];
int w[N];
int v[N];
 
int main() {
    int n,W; cin >> n >> W;
    for(int i=1;i<=n;i++) {
        cin >> w[i] >> v[i];
    }
    for ( int i = 1; i <= n; i++ ) {
        for ( int j = W; j >= 0; j --) {
            for (int k = 0; k*w <= j; k++) {
                f[j] = max(f[j],f[j-w[i]*k] + v[i]*k);
            }
        }
    }
    cout << f[W] <<endl;
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DDsoup

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值