背包问题分为01背包问题和完全背包问题,背包问题用知乎某答主的话讲就是:一个小偷背了一个背包潜进了金店,包就那么大,他如何保证他背出来所有物品加起来的价值最大
动态规划的原理
动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
0-1背包问题
首先对于0-1背包问题,我们需要知道的是:每一个物品只有1个,要么全拿,要么不拿,最后使得拿到的物品的总价值最大。
问题描述:
有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
基本思路 :
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
tab[i][j] = max(tab[i-1][j-weight[i]]+value[i],tab[i-1][j]) ({i,j|0<i<=n,0<=j<=total})
其中i表示放第i个物品,j表示背包所容纳的重量,那么tab[i-1][j-weight[i]]+value[i]表示放入第i物品,刚开始接触会有疑问,tab[i-1][j-weight[i]]这个值,可以这样理解:tab[i-1][j]为装到上一个物品在背包j容量时的最佳值,那么如果我要求在j容量的时候放入现在的i物品的价值,那么是不是要先得到容量为(j-weight[i])时候的价值,即先得到 tab[i-1][j-weight[i]] ,所以 tab[i-1][j-weight[i]]+value[i] 为放入第i物品的价值; tab[i-1][j] 就是不放入第i个物品。
核心代码
for(i = 1; i <= n; i++)
{
for(j = 0; j <= W; j++)
{
if(j < w[i]){
dp[i][j] = dp[i-1][j];
} else {
dp[i][j] = max(dp[i-1][j], dp[i-1][j - w[i]] + v[i]);
}
}
}
优化后的代码
for(i = 1; i <= n; i++)
{
for(j = W; j >= w[i]; j--)
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
}
C 代码
#include <stdio.h>
int c[10][100]={0};
void knap(int m,int n){
int i,j,w[10],p[10];
for(i=1;i<n+1;i++)
scanf("%d,%d",&w[i],&p[i]);
for(j=0;j<m+1;j++)
for(i=0;i<n+1;i++)
{
if(j<w[i])
{
c[i][j]=c[i-1][j];
continue;
}else if(c[i-1][j-w[i]]+p[i]>c[i-1][j])
c[i][j]=c[i-1][j-w[i]]+p[i];
else
c[i][j]=c[i-1][j];
}
}
int main(){
int m,n;int i,j;
printf("input the max capacity and the number of the goods:\n");
scanf("%d,%d",&m,&n);
printf("Input each one(weight and value):\n");
knap(m,n);
printf("\n");
for(i=0;i<=n;i++)
for(j=0;j<=m;j++)
{
printf("%4d",c[i][j]);
if(m==j) printf("\n");
}
}
完全背包问题
问题描述:
有 N 种物品和一个容量为 V 的背包,每种物品都有无限件可用。第 i 种物品的费用是 c[i],价值是 w[i] 。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路:
这个问题非常类似于 01背包问题,所不同的是每种物品都有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取 0 件、取 1 件、取 2 件 ......等很多种。如果仍然按照解 01背包时的思路,令 f[i][v] 表示前 i 种物品恰放入一个容量为 v 的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程:
C++代码
#include <iostream>
#include <algorithm>
#define N 1002
using namespace std;
int f[N];
int w[N];
int v[N];
int main() {
int n,W; cin >> n >> W;
for(int i=1;i<=n;i++) {
cin >> w[i] >> v[i];
}
for ( int i = 1; i <= n; i++ ) {
for ( int j = W; j >= 0; j --) {
for (int k = 0; k*w <= j; k++) {
f[j] = max(f[j],f[j-w[i]*k] + v[i]*k);
}
}
}
cout << f[W] <<endl;
return 0;
}