1、2022
将 2022 拆分成 10 个互不相同的正整数之和, 总共有多少种拆分方法?
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define fp(i,a,b) for(int i=a;i<=b;++i)
const int N=1e6+10;
const int mod=1e9+7;
const double eps=1e-5;
typedef double db;
int dp[2050][12][2050];
signed main()
{
for(int i=0;i<=2022;i++)
{
dp[i][0][0]=1;
}
for(int i=1;i<=2022;i++)
{
for(int j=1;j<=10;j++)
{
for(int k=1;k<=2022;k++)
{
dp[i][j][k]=dp[i-1][j][k];
if(k>=i)dp[i][j][k]+=dp[i-1][j-1][k-i];
}
}
}
cout<<dp[2022][10][2022]<<"\n";
return 0;
}
dp[i][j][k] 前i个物品里选j个体积之和是k
不选第i个 dp[i][j][k]=dp[i-1][j][k];
选第i个dp[i][j][k]+=dp[i-1][j-1][k-i];
降空间
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define fp(i,a,b) for(int i=a;i<=b;++i)
const int N=1e6+10;
const int mod=1e9+7;
const double eps=1e-5;
typedef double db;
int dp[12][2050];
signed main()
{
dp[0][0]=1;
for(int i=1;i<=2022;i++)
{
for(int j=10;j>=1;j--)
{
for(int k=1;k<=2022;k++)
{
if(k>=i)dp[j][k]+=dp[j-1][k-i];
}
}
}
cout<<dp[10][2022]<<"\n";
return 0;
}
类似于01背包
2、取模
给定 n, m,问是否存在两个不同的数 x,y 使得 1≤x<y≤m 且 n mod x = n mod y。
记 L=lcm(1,2,⋯,m)。如果n到不了L-1 根据鸽巢原理 必然是YES
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define fp(i,a,b) for(int i=a;i<=b;++i)
const int N=1e6+10;
const int mod=1e9+7;
const double eps=1e-5;
typedef double db;
int t;
int n,m;
int check(int n,int m){
set<int>a;
for(int i=1;i<=m;i++){
if(a.count(n%i)!=0)return 1;
a.insert(n%i);
}
return 0;
}
signed main()
{
cin>>t;
while(t--)
{
cin>>n>>m;
if(m>=30)
{
cout<<"Yes\n";
}
else
{
if(check(n,m))cout<<"Yes\n";
else cout<<"No\n";
}
}
return 0;
}
复杂度最坏也有O(nt)