计算方法考试大题套路分析(一)

明天就要考试了,计算方法。一直在刷题,敲计算器敲得手发麻,饭都没吃,水也没喝,写一篇博客总结算是一种放松吧。

一、曲线拟合的最小二乘法问题。

有的需要先处理,比如x方,lnx,e^x

有的只有一项和x有关得话就会比较好办——有一列0

写出矛盾方程组——写出法方程组——解之得——拟合方程为

一开始,矛盾方程组转为正则方程组,我不熟练,写题还要翻书对着看看,练的多了,也就成了一种肌肉记忆了。

二、非线性方程数值解法

隔根区间验证——收敛性分析——迭代计算、

简单迭代法的收敛性定理2.2牢记,证明有一页不用搭理,没有精力了。

有的题让你自己构造简单迭代格式,利用方程的等价变形可以构造不止一种,这种题容易坑爹,你需要结合2.2想好再构造,要不然发现有的不收敛直接气晕。

还有的给的十分宽泛,也不好搞。直接说用迭代法求某方程在某点附近的根,将计算结果准确到几位有效数字。但是一般不难为人,牛顿迭代法和简单迭代都可以。

三、矩阵分解

A=LU

Doolittle分解居多(典型),有的问的是求原方程组得解,不该画蛇添足不要画蛇添足

注意存在唯一的Doolittle分解或Crout分解的条件

乔列斯基分解没有见考过,时间有限我没有复习

 

四、线性代数方程组解法

1证明这个方法对任意的初始向量都收敛(Jacobi定理3.7或者JGS定理3.8)或者考查w在什么范围内取值时该迭代格式对任意的初始向量收敛(常见于简单迭代法,定理3.5运用)

2写出迭代格式(标配)

3取初值然后计算(最多的我算了12次,手指发麻是常态)

有的题如果真的是知识点忘了,前面的小问不会做不影响后面。我碰到了一个迭代收敛速度问题,复习的不扎实瞬间懵了,(2)不会,但是(是)是个取初值然后计算,可以做。

没有谁的能力是固有的、本事是天生的。踏实刷题,用心总结,实干巧干才是王道。

接着刷题,计方和我,不是你死就是我活!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西工大里的河南烩面

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值