明天就要考试了,计算方法。一直在刷题,敲计算器敲得手发麻,饭都没吃,水也没喝,写一篇博客总结算是一种放松吧。
一、曲线拟合的最小二乘法问题。
有的需要先处理,比如x方,lnx,e^x
有的只有一项和x有关得话就会比较好办——有一列0
写出矛盾方程组——写出法方程组——解之得——拟合方程为
一开始,矛盾方程组转为正则方程组,我不熟练,写题还要翻书对着看看,练的多了,也就成了一种肌肉记忆了。
二、非线性方程数值解法
隔根区间验证——收敛性分析——迭代计算、
简单迭代法的收敛性定理2.2牢记,证明有一页不用搭理,没有精力了。
有的题让你自己构造简单迭代格式,利用方程的等价变形可以构造不止一种,这种题容易坑爹,你需要结合2.2想好再构造,要不然发现有的不收敛直接气晕。
还有的给的十分宽泛,也不好搞。直接说用迭代法求某方程在某点附近的根,将计算结果准确到几位有效数字。但是一般不难为人,牛顿迭代法和简单迭代都可以。
三、矩阵分解
A=LU
Doolittle分解居多(典型),有的问的是求原方程组得解,不该画蛇添足不要画蛇添足
注意存在唯一的Doolittle分解或Crout分解的条件
乔列斯基分解没有见考过,时间有限我没有复习
四、线性代数方程组解法
1证明这个方法对任意的初始向量都收敛(Jacobi定理3.7或者JGS定理3.8)或者考查w在什么范围内取值时该迭代格式对任意的初始向量收敛(常见于简单迭代法,定理3.5运用)
2写出迭代格式(标配)
3取初值然后计算(最多的我算了12次,手指发麻是常态)
有的题如果真的是知识点忘了,前面的小问不会做不影响后面。我碰到了一个迭代收敛速度问题,复习的不扎实瞬间懵了,(2)不会,但是(是)是个取初值然后计算,可以做。
没有谁的能力是固有的、本事是天生的。踏实刷题,用心总结,实干巧干才是王道。
接着刷题,计方和我,不是你死就是我活!