最小二乘法

一、前言

        在工程应用中,我们经常会用一组观测数据去估计模型的参数,模型是我们根据先验知识定下的。例如常见的直线模型就是y=ax+b。但实际应用生活中,往往找不到一条直线可以经过所有数据,如下图。

        针对找不到唯一的a和b去组成直线模型,即方程无解,但我们需要根据未知来预测结果,那么就需要数据拟合。

        于是这就是我们要解决的问题:虽然没有确定解,但是我们能不能求出近似解,使得模型能在各个观测点上达到“最佳“拟合。那么“最佳”的准则是什么?可以是所有观测点到直线的距离和最小,也可以是所有观测点到直线的误差(真实值-理论值)绝对值和最小,也可以是其它,如果是你面临这个问题你会怎么做?

早在19世纪,勒让德就认为让“误差的平方和最小”估计出来的模型是最接近真实情形的。

为什么就是误差平方而不是其它的,这个问题连欧拉、拉普拉斯都未能成功回答,后来是高斯建立了一套误差分析理论,从而证明了确实是使误差平方和最小的情况下系统是最优的。

二、举例说明

下面讲述的时温度和冰淇淋的销量

针对上述数据,我们大概可以得出数据基本分配在一条直线上

我们在根据最小二乘法这个方法开始计算“误差的平方和最小",带入公式如下图所示。

根据微积分,可以推算出a和b的值

但针对不同的数据,选择不同的方程结果也会不同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值