最小生成树

相关概念

什么是生成树

一个连通图的生成树是一个极小的连通子图,它包含图中全部的n个顶点,但只有构成一棵树的n-1条边。

生成树的属性

  • 一个连通图可以有多个生成树。
  • 一个连通图的所有生成树都包含相同的顶点个数和边数。
  • 生成树当中不存在环。
  • 移除生成树中的任意一条边都会导致图的不连通, 生成树的边最少特性。
  • 在生成树中添加一条边会构成环。
  • 对于包含n个顶点的连通图,生成树包含n个顶点和n-1条边。
  • 对于包含n个顶点的无向完全图最多包含 n n − 2 n^{n-2} nn2 颗生成树。

什么是最小生成树

所谓一个带权图的最小生成树,就是原图中边的权值最小的生成树 ,所谓最小是指边的权值之和小于或者等于其它生成树的边的权值之和。

算法介绍

Prim算法

Prim 算法采用的是一种贪心策略。
每次将离连通部分的最近的点和点对应的边加入的连通部分,连通部分逐渐扩大,最后将整个图连通起来,并且边长之和最小。

Kruskal算法

算法思路:

  • 将所有边按照权值的大小进行升序排序,然后从小到大一一判断。
  • 如果这个边与之前选择的所有边不会组成回路,就选择这条边分;反之,舍去。
  • 直到具有 n 个顶点的连通网筛选出来 n-1 条边为止。
  • 筛选出来的边和所有的顶点构成此连通网的最小生成树。

判断是否会产生回路的方法为:使用并查集。

  • 在初始状态下给各个个顶点在不同的集合中。
  • 遍历过程的每条边,判断这两个顶点的是否在一个集合中。
  • 如果边上的这两个顶点在一个集合中,说明两个顶点已经连通,这条边不要。如果不在一个集合中,则要这条边。

Prim算法求最小生成树

原题链接

题目描述

给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G = ( V , E ) G=(V,E) G=(V,E),其中 V V V 表示图中点的集合, E E E表示图中边的集合,
n = ∣ V ∣ , m = ∣ E ∣ n=|V|, m=|E| n=V,m=E
V V V 中的全部 n n n 个顶点和 E E E n − 1 n-1 n1 条边构成的无向连通子图被称为 G G G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G G G 的最小生成树。

输入格式

第一行包含两个整数 n n n m m m
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围

1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
const int inf=0x3f3f3f3f;
const int N=510;
int g[N][N];
int n,m;
int st[N];
int dist[N];

int prim()
{
    memset(dist,inf,sizeof dist);
    int res=0;
    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
        {
            if(!st[j]&&(t==-1||dist[t]>dist[j]))
            {
                t=j;
            }
        }
        if(i&&dist[t]==inf) return inf;
        if(i)   res+=dist[t];
        for(int j=1;j<=n;j++)
        {
            dist[j]=min(dist[j],g[t][j]);
        }
        st[t]=true;
    }
    return res;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);
    cin>>n>>m;
    memset(g,inf,sizeof g);
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=g[b][a]=min(g[a][b],c);
    }
    int t=prim();
    if(t==inf)  cout<<"impossible"<<'\n';
    else    cout<<t<<'\n';
    return 0;
}

Kruskal算法求最小生成树

原题链接

题目描述

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围

1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
const int inf=0x3f3f3f3f;
const int N=2e5+10;
int n,m;
struct Node
{
    int a,b,w;
    bool operator < (const Node &W) const
    {
        return w<W.w;
    }
}edges[N];
int p[N];

int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        cin>>edges[i].a>>edges[i].b>>edges[i].w;
    }
    sort(edges+1,edges+1+m);
    for(int i=1;i<=n;i++)   p[i]=i;
    int res=0,cnt=0;
    for(int i=1;i<=m;i++)
    {
        int a=edges[i].a,b=edges[i].b,w=edges[i].w;
        a=find(a),b=find(b);
        if(a!=b)
        {
            p[a]=b;
            res+=w;
            cnt++;
        }
    }
    if(cnt<n-1) cout<<"impossible"<<'\n';
    else    cout<<res<<'\n';
    return 0;
}

本文档基于 AcWing 制作

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值