第三讲 感应熔炼电炉设计和感应器参数计算(上)
感应熔炼电炉炉衬及感应器线圈尺寸的确定
1. 感应熔炼电炉炉衬尺寸的确定
1.1 什么是电炉炉衬
- 感应熔炼电炉的炉衬处于感应器线圈与被熔炉料之间,是由耐火材料与隔热、绝缘材料构成的组合体。 - 感觉就是装炉料的那一个篓子。
- 炉衬从被熔炉料到感应器线圈分为三层:
- 耐火层:耐火层由耐火材料打结并经烧结而成,俗称坩埚。所谓炉衬直径就是坩埚内径、打结用坩埚模的外径及液态炉料的直径。
- 隔热层:耐火层与绝缘层之间,阻止热量向外传导,减少热损耗;保护外部结构不被高温损坏;
- 绝缘层:最外层,贴近感应器线圈;防止感应电流泄露或短路;确保感应线圈与金属液之间电气绝缘;
- 解释:
- 什么是打结?:“打结”是感应电炉制造炉衬时的一个工艺。是把耐火材料(一般是颗粒状粉料)一层一层夯实、压实在模具周围,形成内壁的过程,专业术语就叫打结;打结之后再通过高温烧结,使它变成坚硬、耐高温的一整块“坩埚”。
- 什么叫打结用坩埚模的外径 = 炉衬直径?:整个成型过程用一个中间的模具(叫坩埚模)来预留出炉料的空间。换句话说:工人把耐火材料围着模具打结成型,模具拔出来后,就剩下一个中空的圆柱体——这就是我们说的“坩埚”;这个模具的外径就是以后金属液体要放进去的内径,也就是炉衬的内径;所以:炉衬直径 = 打结用模具的外径 = 液态炉料的等效直径。
1.2 炉衬尺寸和额定容量
- (1)感应电炉的炉衬尺寸应按额定容量设计,而非按超装量。
- (2)新炉最多允许超装10%,炉衬变薄后超装量也不能超过25%,否则存在安全隐患。
- (3)即便客户要求超装30%也不宜满足,否则易使实际容量严重超标,影响炉子安全与寿命。
1.3 炉衬几何尺寸确定步骤
(1)第一步:计算金属液容积 V G V_G VG。
计算金属液容积
V
G
V_G
VG:
V
G
=
G
L
γ
y
V_G = \frac{G_L}{\gamma_y}
VG=γyGL
其中:
- V G V_G VG —— 金属液容积(单位:m³)
- G L G_L GL —— 炉子额定容量(单位:kg)
- γ y \gamma_y γy —— 炉料液态密度(单位:kg/m³)
额定容量是按照重量给的,所以容积需要按照密度公式进行换算。
- 由于铸铁密度差异大、钢密度差异小,各类铸铁的液态密度为 6900 ~ 7100 kg/m³,钢的液态密度为 7200 kg/m³。为统一设计,感应电炉按铸铁的下限密度 6900 kg/m³ 进行容积设计,以保证适用于各种牌号金属的熔炼。
(2)第二步:计算液态炉料平均直径 D 2 D_2 D2 和金属液高度 H 2 H_2 H2
为了减轻液态金属对炉衬底部的压力,炉衬壁设计为不等径的,即外部为等径圆柱体,内部设计为带
tan
α
\tan\alpha
tanα 的斜度,上薄下厚。其斜度的计算式为:
tan
α
=
D
2
max
−
D
2
min
2
H
3
\tan \alpha =\frac{D_{_{2\max}}-D_{_{2\min}}}{2H_{_3}}
tanα=2H3D2max−D2min
式中:
- tan α \tan\alpha tanα —— 炉衬内壁斜度(m/m);
- D 2 max D_{2\text{max}} D2max —— 液态炉料上部最大直径(m);
- D 2 min D_{2\text{min}} D2min —— 液态炉料下部最小直径(m);
- H 3 H_3 H3 —— 炉衬高度(m)。
通过图像就比较的直观:
在工程应用中,一般取 tan α = 0.05 ∼ 0.10 \tan\alpha = 0.05 \sim 0.10 tanα=0.05∼0.10 m/m。
液态炉料平均直径的计算式为:
D
2
=
4
V
G
π
Y
3
D_{_2}=\sqrt[3]{\frac{4V_{_{\mathrm{G}}}}{\pi Y}}
D2=3πY4VG
式中:
- D 2 D_2 D2 —— 液态炉料平均直径(m),其算术平均值为 D 2 max + D 2 min 2 \frac{D_{2\text{max}} + D_{2\text{min}}}{2} 2D2max+D2min;
- Y Y Y —— 液态炉料高度与直径之比, Y = H 2 D 2 Y = \frac{H_2}{D_2} Y=D2H2;
- H 2 H_2 H2 —— 液态炉料高度(m)。
- 推导来源:
- 公式两边都包含 D 2 D_2 D2 是因为这个公式是通过液态炉料的体积与形状关系来推导的。液态炉料可以看作一个类似圆柱的形状,因此其体积可以用圆柱体积公式来表示:
V G = π D 2 2 4 H 2 V_G = \frac{\pi D_2^2}{4} H_2 VG=4πD22H2
- 然后, Y Y Y 定义为液态炉料的高度与直径之比,即:
Y = H 2 D 2 Y = \frac{H_2}{D_2} Y=D2H2
- 通过代入 Y Y Y,得到公式:
H 2 = Y ⋅ D 2 H_2 = Y \cdot D_2 H2=Y⋅D2
- 将 H 2 H_2 H2 代入体积公式中,最终得到:
D 2 = 4 V G π Y D_2 = \sqrt{\frac{4 V_G}{\pi Y}} D2=πY4VG
Y值可参考表选择。
由此可得出金属液高度
H
2
H_2
H2 为:
H
2
=
Y
⋅
D
2
H_2 = Y \cdot D_2
H2=Y⋅D2
Y值 是一个经验数值(主要还是因为密度不同),表示液态炉料的高度与直径之比。对于铸铁和钢的熔炼电炉来说:
- Y值偏低 会导致炉内电磁场分布不均,从而影响熔炼效果。
- Y值偏高 会导致漏磁通增加,从而降低熔炼效率。
H2 是液态炉料的有效高度,考虑到电磁搅拌产生的“驼峰”效应、坩埚表层的炉渣层以及炉子允许的超装量等因素,实际设计高度 H3 应比 H2 值大,一般取 H3 = (1.30~1.40) * H2。
- 注意,感觉这里 的 H3 值得是整个炉子都是斜的,醉了,不仅仅是下面是斜的。
2. 感应器线圈几何尺寸的确定
1.1 感应器线圈内径 D 1 D_1 D1
D 1 = D 2 + 2 Δ g D_1 = D_2 + 2\Delta g D1=D2+2Δg
式中:
- D 1 D_1 D1 —— 感应器线圈内径(m);
- Δ g \Delta g Δg —— 炉衬平均壁厚(m)。
1.2 炉衬平均壁厚的选择
炉衬平均壁厚 Δ g \Delta g Δg 可按表2选择,由《感应加热技术应用及其设备设计经验》一书提供。
《灰铸铁球墨铸铁及其熔炼》一书也提供了相应的数据,电炉炉衬的平均壁厚选择与炉子额定容量相关。具体选择如下:
- 炉子额定容量 < 0.5t:炉衬平均壁厚取 (0.21~0.28) * D2
- 炉子额定容量 0.5~1t:炉衬平均壁厚取 (0.20~0.21) * D2
- 炉子额定容量 1~5t:炉衬平均壁厚取 (0.14~0.20) * D2
- 炉子额定容量 5~10t:炉衬平均壁厚取 (0.13~0.14) * D2
- 炉子额定容量 10~30t:炉衬平均壁厚取 (0.11~0.13) * D2
炉衬壁厚 Δ g \Delta g Δg 选择对炉子的设计至关重要,主要有以下几个方面的考虑:
- 耐火层厚度:耐火层(坩埚)必须保持一定的厚度,但不宜过厚。过厚的耐火层会导致:
- 绝缘电阻过高;
- 当磁力线穿过耐火层时,会产生较大的磁损失;
- 影响电效率并降低炉子的功率因数。
- 保温层作用:虽然金属液与感应器线圈之间的绝缘主要由耐火层提供,但保温层也起到了辅助隔热的作用。保温层的绝缘电阻较高,可以帮助隔热,但其厚度相对较薄。
- 温差影响:熔炼铸铁和钢的炉子,炉衬两侧温差可高达 1400~1600℃,某些合金的熔炼时温差可能更高。为了减少热量散失,需要保持耐火层的适当厚度,确保导热性尽可能低。
- 耐火材料的导热性:不同类型的耐火材料具有不同的导热性:
- 酸性耐火材料的热导率约为 0.8~1.2 W/(m·℃);
- 碱性耐火材料的热导率约为 1.5 W/(m·℃)。
1.3 感应器线圈高度 H 1 H_1 H1
什么是感应器:感应器就是电炉的“加热线圈”,通电后产生交变磁场,通过电磁感应让炉内金属自行发热熔化。
感应器线圈高度
H
1
H_1
H1 通常大于熔液高度
H
2
H_2
H2,一般取:
H
1
=
(
1.1
∼
1.3
)
H
2
H_1 = (1.1 \sim 1.3) H_2
H1=(1.1∼1.3)H2
这是为了:
- 保证炉衬全部处于电磁场中,减少漏磁;
- 获得良好的电磁搅拌效果。
具体系数的选取依据如下:
- 功率高、频率低、感应器包围的炉料面积小 → 取下限(1.1);
- 功率低、频率高、感应器包围的炉料面积大 → 取上限(1.3)。
感应熔炼电炉感应器参数计算
1. 前言
1.1 电路的基本组成方式
✅ 变频电源的负载电路补偿电热电容器连接方式:
- 串联谐振:电容器与电感器串联,用于调节负载电路的共振频率,使得感应加热系统在工作时效率更高。
- 并联谐振:电容器与电感器并联,同样用于调节频率,使电源与负载之间达到最佳匹配。
✅ 多路独立功率输出的应用:
- 多路功率输出:近年来,采用了一种技术,利用同一台(组)整流器向多台逆变器供电,使多台熔炼炉能够同时工作。
- “一拖二”变频电源:一台电源可以同时为**两台炉体(一般是熔炼炉和保温炉)**提供功率:
- 熔炼炉:获取大部分功率进行金属熔化;
- 保温炉:则获得剩余部分,维持温度。
✅ 半导体功率器件:
- 在**“一拖二”电源**中,常见的半导体功率器件有两种:
- SCR(硅控制整流器);
- IGBT(绝缘栅双极型晶体管)。
✅ 主电路类型:
- “一拖二”电源的主电路设计有两种类型:
- 串联谐振式;
- 并联谐振式。
主电路和变频电源的区别:
- 变频电源(包括逆变器整流器等等,主要提供电力的)是整个系统的电力来源,它负责调整和提供适当频率和电压的电力,以满足感应加热的需要。
- 主电路是电源输出与炉体感应加热之间的桥梁(类似于变频电源的下游),它负责将电源的电力传递到感应线圈,并通过电磁场加热金属液。
虽然感应器线圈参数计算方法是完全相同的,但在计算电炉参数前首先应明确是串联谐振还是并联谐振。
1.2 感应器参数计算的方法简介
感应器参数计算分为变压器法和电磁场法(贝塞尔函数法)
- 变压器法:
- 这种方法通常用于较简单的感应加热系统计算,它将感应器设计类比为变压器,基于电流和电压的关系来计算感应器的参数。
- 电磁场法(贝塞尔函数法):
- 这种方法更为精确,常用于较复杂的系统设计,尤其是涉及到铸铁、钢、铝、铜等金属熔炼时,采用电磁场法可以更好地模拟感应加热过程中的电磁场分布。贝塞尔函数法用于描述电磁场的分布,考虑了电流、磁场、温度等因素对加热过程的影响。
- 本讲中的感应器设计与计算,(1)默认采用并联谐振方式的负载电路补偿电热电容器连接方式,(2)并且计算方法使用电磁场法。
2 感应器各类尺寸计算例子
2.1 前提已知条件
- 熔炼铸铁类型:灰铸铁,牌号HT250(GB/T 9439-2010),珠光体类型灰铸铁。
- 过热温度:1500~1520℃。
- 出铁液温度:1500℃。
- 浇注温度:1395~1420℃。
- 电炉额定容量:6t。
- 变频电源额定功率:3600kW。
- 标称频率:300Hz。
- 整流变压器阀侧电压:660V。
- 双整流器:12脉波。
2.2 确定变频电源频率、炉衬及感应器尺寸
(1)计算电源频率:依据前一讲的根据亨利·罗文和欧文·德约茨的频率选择图,通过这些数据可以得出适用于该条件下的频率为300Hz。这种频率选择有助于优化感应电炉的电磁场分布,确保熔炼过程的稳定性和效率。
-
前提条件:为规范炉型尺寸并减少炉子的尺寸种类,可以将计算得到的炉型和感应器线圈尺寸按照一定的修约规则进行调整。具体做法是将计算结果的尾数以5为修约间隔进行修约 - 即任何计算得出的尺寸值都会四舍五入到最接近的5的倍数。
- 修约的例子:
- 计算结果:首先,计算得到炉衬的平均直径 D 2 = 0.914 D_2 = 0.914 D2=0.914 m。
- 乘以 2:将 D 2 D_2 D2 乘以 2,得到 1.828 1.828 1.828 m。
- 修约尾数:根据“4舍6入5单双”的规则对尾数进行修约。这里 1.828 1.828 1.828 m 经过修约后,尾数“8”大于 5,所以向上修约到 1.830 1.830 1.830 m。
- 除以 2:最后,再将修约后的值 1.830 1.830 1.830 m 除以 2,得到最终的修约值 0.915 0.915 0.915 m。
(2)计算炉衬尺寸::
-
炉料熔液容积 V G V_G VG 的计算公式(即密度公式)为:
-
V G = G L γ Y = 6000 6900 = 0.870 ( m 3 ) V_{_{\mathrm{G}}}=\frac{G_{_{\mathrm{L}}}}{\gamma _{_{\mathrm{Y}}}}=\frac{6000}{6900}=0.870 (\mathrm{m}^3) VG=γYGL=69006000=0.870(m3)
-
取 Y = H 2 D 2 = 1.45 Y=\frac{H_{_2}}{D_{_2}}=1.45 Y=D2H2=1.45,上述讲解的经验值:
-
D 2 = 4 V G π Y 3 = 4 × 0.870 π × 1.45 3 = 0.914 ( m ) D_{_2}=\sqrt[3]{\frac{4 V_{_{\mathrm{G}}}}{\pi \,\,Y}}=\sqrt[3]{\frac{4\times 0.870}{\pi \times 1.45}}=0.914 (\mathrm{m)} D2=3πY4VG=3π×1.454×0.870=0.914(m)
-
修约后炉衬平均直径(液态炉料平均直径) D 2 D_2 D2 为$ 0.915 , \text{m}$。
-
液态炉料高度 H 2 H_2 H2 为:
-
H 2 = 4 V G π D 2 2 = 4 × 0.870 π × 0.91 5 2 = 1.323 ( m ) H_2=\frac{4V_G}{\pi D_{2}^{2}}=\frac{4\times 0.870}{\pi \times 0.915^2}=1.323\left( m \right) H2=πD224VG=π×0.91524×0.870=1.323(m)
-
实际上,只需要这个就行:
H 2 = Y ⋅ D 2 H_2 = Y \cdot D_2 H2=Y⋅D2
-
感应器线圈内径 D 1 D_1 D1为(加上俩炉衬的厚度):
-
D 1 = D 2 + 2 △ g = 0.915 + 2 × 0.125 = 1.165 ( m ) D_1=D_2+2\bigtriangleup g=0.915+2\times 0.125=1.165\left( m \right) D1=D2+2△g=0.915+2×0.125=1.165(m)
-
感应器线圈高度 H 1 H_1 H1为:
-
H 1 = 1.2 H 2 = 1.2 × 1.323 = 1.588 ( m ) H_1=1.2H_2=1.2\times 1.323=1.588\left( m \right) H1=1.2H2=1.2×1.323=1.588(m)
-
实取 H 1 H_1 H1=1.6m。
-
以上数据经先后计算得:
- 炉衬平均内径(液态炉料平均直径) D 2 = 0.915 m D_2 = 0.915 \, \text{m} D2=0.915m;
- 感应器线圈内径 D 1 = 1.165 m D_1 = 1.165 \, \text{m} D1=1.165m;
- 液态炉料高度 H 2 = 1.323 m H_2 = 1.323 \, \text{m} H2=1.323m。
- 感应器线圈长度(高度) H 1 = 1.6 m H_1 = 1.6 \, \text{m} H1=1.6m;
(3)计算感应器线圈相关尺寸:
-
计算感应器液态炉料一侧铜管的电流透入深度:
- 利用感应器液态炉料一侧铜管的电流透入深度 Δ 1 \Delta1 Δ1为:
Δ 1 = 503 ρ 1 μ r f = 0.07113 / f \varDelta _{_1}=503\sqrt{\frac{\rho _{_1}}{\mu _{_{\mathrm{r}}}f}}=0.07113/\sqrt{f} Δ1=503μrfρ1=0.07113/f
-
式中:
-
Δ 1 \Delta_1 Δ1 —— 感应器液态炉料一侧铜管的电流透入深度(m);
- 解释:(1)铜管就是感应线圈(2)感应线圈(铜管)内部是通水的
-
ρ 1 \rho_1 ρ1 —— 室温至 80℃ 时电工铜的平均电阻率,可按下表选择;
-
在正常循环水冷条件下,感应器线圈铜管表面温度也会达到80℃。室温至80℃(线圈铜管最高发
热温度)的平均电阻率ρ 1为表3室温至80℃各点电阻率的算术平均值,即$\rho _1=2\times 10^{\mathrm{-8}},,\bigl( \Omega \cdot \mathrm{m} \bigr) $
-
-
μ r \mu_r μr —— 感应器线圈铜管的相对磁导率, μ r ≈ 1 \mu_r \approx 1 μr≈1;
-
f f f —— 频率(Hz)。
-
-
计算炉料的电流透入深度 Δ 2 \Delta2 Δ2:
-
Δ 2 = 503 ρ 2 μ r f = 0.588 / f \varDelta _{_2}=503\sqrt{\frac{\rho _{_2}}{\mu _{_{\mathrm{r}}}f}}=0.588/\sqrt{f} Δ2=503μrfρ2=0.588/f
-
式中:
- ρ 2 \rho_2 ρ2 —— 铸铁室温到液态的平均电阻率(Ω·m),取 1.366 × 1 0 − 6 Ω ⋅ m 1.366 \times 10^{-6}\ \Omega\cdot\text{m} 1.366×10−6 Ω⋅m(钢的室温到液态的平均电阻率取 1.10 × 1 0 − 6 Ω ⋅ m 1.10 \times 10^{-6}\ \Omega\cdot\text{m} 1.10×10−6 Ω⋅m)。
-
当f=300 Hz时:
-
Δ 1 = 0.07113 / f = 0.07113 300 = 0.004 ( m ) Δ 2 = 0.588 / f = 0.588 300 = 0.034 ( m ) \begin{aligned} \varDelta _{_1}&=0.07113/\sqrt{f}=0.07113\sqrt{300}\\ &=0.004 (\mathrm{m)}\\ \varDelta _{_2}&=0.588/\sqrt{f}=0.588\sqrt{300}\\ &=0.034 (\mathrm{m)}\\ \end{aligned} Δ1Δ2=0.07113/f=0.07113300=0.004(m)=0.588/f=0.588300=0.034(m)
-
感应器的计算直径 D 1 ′ D_1' D1′(即整个感应器的边界在这里):
D 1 ′ = D 1 + Δ 1 = 1.165 + 0.004 = 1.169 (m) D_1' = D_1 + \Delta_1 = 1.165 + 0.004 = 1.169\ \text{(m)} D1′=D1+Δ1=1.165+0.004=1.169 (m) -
炉料的计算直径 D 2 ′ D_2' D2′(即真正要被加热的那部分作为炉料,涡流存在的那部分可能很快就热了?,所以这里是求到了涡流并不存在的那个部分的炉料):
D 2 ′ = D 2 − Δ 2 = 0.915 − 0.034 = 0.881 (m) D_2' = D_2 - \Delta_2 = 0.915 - 0.034 = 0.881\ \text{(m)} D2′=D2−Δ2=0.915−0.034=0.881 (m)
-
3. 感应器电路参数计算
3.1 无心感应熔炼电炉和透热炉的异同点
等值电路和电磁解法相同:
- 在电磁学分析中,无心感应熔炼电炉和透热炉(如圆柱形工件加热炉)的物理模型在电路的角度看起来非常类似。也就是说,它们的电路结构和电流分布、感应电流的变化等是相同的,区别仅在于物理参数(如电阻率等)。
不同的热物理参数:
- “热物理参数如平均电阻率等不同”:虽然电磁场的解析方法和电路结构相似,但这两种炉子(无心感应熔炼电炉和圆柱形工件透热炉)由于所加热的材料不同,它们的热物理参数(比如电阻率、热导率等)是不同的。这意味着电流和热量的传递方式会有所差异,需要分别考虑不同材料的物理属性。
计算方法的相似性:
- “计算感应熔炼电炉感应器的电参数,仍然采用计算单匝感应器-炉料系统的电参数”:这里的意思是,计算感应熔炼电炉的电参数时,还是采用类似于单匝感应器-炉料系统的计算方法。单匝感应器的计算方式是从一个单独的线圈(即感应线圈)与炉料之间的电磁关系出发,计算感应电流和加热效果,再扩展到整个炉子的系统中。
3.2 感应器-炉料系统的热计算和电计算的说明
感应器-炉料系统的参数设计涉及两个方面:
- 热计算:是为了得到炉子的热损失功率。
- 电计算:是为了设计电参数,如感应器电感、电阻、感应功率等。
炉子的热损失主要来自两个方面:
- 通过炉衬和炉底的热损失功率:这部分是恒定的、可控的。
- 炉口的热辐射损失功率:这部分变化较大,取决于炉盖是否关闭、开合频率等。
工程中通常简化热计算:
- 正规设计的炉子,其炉衬和炉底热损失可以被视为一个常量,不需要每次重新计算。
- 而炉口的热损失不稳定,受操作影响大,但在设计时就通过热效率 η t \eta_t ηt 把它考虑进去了。
因此:只需电计算:
- 因为炉子的热效率 η t \eta_t ηt 在确定额定功率时已经考虑进去了,所以我们只需要做电计算来设计感应器参数。
3.3 感应线圈,炉料和炉衬的相关参数计算
(1)默认参数说明:
- 下标“1”:代表 感应器线圈
例如: ρ 1 \rho_1 ρ1 表示线圈铜管的电阻率, μ 1 \mu_1 μ1 表示线圈的磁导率。
- 下标“2”:代表 炉料(被加热的金属)
例如: ρ 2 \rho_2 ρ2 是铸铁的电阻率, Δ 2 \Delta_2 Δ2 是炉料中的电流透入深度。
- 下标“3”:代表 炉衬(耐火材料)
例如: d 3 d_3 d3 可能代表炉衬厚度。
(2)炉料的电阻 r 2 r_2 r2 与电抗 X 2 m X_{2m} X2m的计算:
炉料电阻:
r
2
=
π
ρ
2
m
2
2
λ
H
2
r_2=\pi \rho _2\frac{m_{2}^{2}\lambda}{H_2}
r2=πρ2H2m22λ
式中:
- r 2 r_2 r2 —— 炉料电阻(Ω);
- ρ 2 \rho_2 ρ2 —— 铸铁室温到液态的平均电阻率(Ω·m);
- m 2 m_2 m2 —— 贝塞尔函数的自变数;
- H 2 H_2 H2 —— 液态炉料高度(m);
- A A A —— 计算系数, A = f ( m 2 ) A = f(m_2) A=f(m2)。
电抗
X
2
m
X_{2m}
X2m:
x
2
m
=
r
2
B
A
x_{_{2\mathrm{m}}}=r_{_2}\frac{B}{A}
x2m=r2AB
式中:
- x 2 m x_{2m} x2m —— 炉料电抗(Ω);
- r 2 r_2 r2 —— 炉料电阻(Ω);
- A A A、 B B B —— 计算系数, A = f ( m 2 ) A = f(m_2) A=f(m2), B = f ( m 2 ) B = f(m_2) B=f(m2)。
上述两个式子中:
m
2
=
D
2
′
2
Δ
2
=
0.881
2
×
0.034
=
18.355
m_{_2}=\frac{D_{_2}^{^{\prime}}}{\sqrt{2}\,\,\Delta _{_2}}=\frac{0.881}{\sqrt{2}\times 0.034}=18.355
m2=2Δ2D2′=2×0.0340.881=18.355
根据电磁场理论,当
m
2
>
6
m_2 > 6
m2>6 时,
A
≈
B
≈
2
m
2
A \approx B \approx \frac{\sqrt{2}}{m_2}
A≈B≈m22,计算系数
A
A
A、
B
B
B 用近似表示时,误差小于 5%。 而当
m
2
>
15
m_2 > 15
m2>15 时,
A
=
B
=
2
m
2
A = B = \frac{\sqrt{2}}{m_2}
A=B=m22。
本例 m 2 = 18.355 m_2 = 18.355 m2=18.355,就有 A = B = 2 m 2 = 0.077 A = B = \frac{\sqrt{2}}{m_2} = 0.077 A=B=m22=0.077。
因此,可以计算出炉料的电阻
r
2
r_2
r2 与电抗
X
2
m
X_{2m}
X2m:
r
2
=
π
ρ
2
m
2
2
Λ
Π
2
=
π
×
1.366
×
1
0
−
6
×
18.35
5
2
×
0.077
1.323
=
8.420
×
1
0
−
5
(
Ω
)
\begin{aligned} r_{_2}&=\pi \rho _{_2}\frac{m_{_2}^{_2}\varLambda}{\varPi _{_2}}\\ &=\pi \times 1.366\times 10^{-6}\times \frac{18.355^{^2}\times 0.077}{1.323}\\ &=8.420\times 10^{-5}\,\,(\Omega )\\ \end{aligned}
r2=πρ2Π2m22Λ=π×1.366×10−6×1.32318.3552×0.077=8.420×10−5(Ω)
x 2 m = r 2 B A = r 2 = 8.420 × 1 0 − 5 ( Ω ) x_{_{2\mathrm{m}}}=r_{_2}\frac{B}{A}=r_{_2}=8.420\times 10^{-5}\,\,(\Omega )\\ x2m=r2AB=r2=8.420×10−5(Ω)
(3)电抗
x
0
x_0
x0 的计算:
x
0
=
x
10
k
1
H
1
/
(
H
1
−
k
1
H
2
)
x_0=x_{10}k_1H_1/\left( H_1-k_1H_2 \right)
x0=x10k1H1/(H1−k1H2)
式中:
- x 0 x_0 x0 —— 磁通克服感应器外部空间所需的磁动势分量的电抗(Ω);
- x 10 x_{10} x10 —— 无限长感应器中 H 1 H_1 H1 段的电抗(Ω);
- k 1 k_1 k1 —— 计算电感系数用的修正系数;
- H 1 H_1 H1 —— 感应器线圈高度(m);
- H 2 H_2 H2 —— 液态炉料高度(m)。
x 10 = ω μ 0 S 1 / H 1 x_{10}=\omega \mu _0S_1/H_1 x10=ωμ0S1/H1
式中:
- ω \omega ω —— 角频率, ω = 2 π f \omega = 2\pi f ω=2πf(rad/s);
- μ 0 \mu_0 μ0 —— 真空磁导率, μ 0 = 4 π × 1 0 − 7 \mu_0 = 4\pi \times 10^{-7} μ0=4π×10−7(H/m);
- S 1 S_1 S1 —— 感应器线圈有效截面积,$S_1 =\frac{\pi}{4}\times D_{1}^{\prime2} $(m²);
- H 1 H_1 H1 —— 感应器线圈高度(m)。
计算电感系数用修正系数 k 1 k_1 k1的选择:
- 当 D 1 ′ / H 1 > 1 D_1'/H_1 > 1 D1′/H1>1 时, k 1 k_1 k1 值可按下图中的曲线1查得;
- 当 D 1 ′ / H 1 ≤ 1 D_1'/H_1 \leq 1 D1′/H1≤1 时,可查下图中的曲线2,或查下表得到 k 1 k_1 k1值[10-12]。
从图中查得
k
1
k_1
k1 值为:
k
1
=
f
(
D
1
′
H
1
)
=
f
(
1.169
1.6
)
=
f
(
0.731
)
=
0.753
k_{_1}=f(\frac{\,\,D_{_1}^{\prime}}{H_{_1}})=f(\frac{1.169}{1.6})=f(0.731)=0.753
k1=f(H1D1′)=f(1.61.169)=f(0.731)=0.753
则:
x
10
′
′
=
ω
μ
0
S
1
/
H
1
=
2
π
f
×
4
π
×
1
0
−
7
×
π
4
×
D
1
′
2
/
H
1
=
2
π
3
×
300
×
1
0
−
7
×
1.16
9
2
/
1.6
=
158.924
×
1
0
−
5
(
Ω
)
\begin{aligned} x_{_{10}}^{^{\prime\prime}}&=\omega \,\,\mu _{_0}\,\,S_{_1}/H_{_1}=2\pi f\times 4\pi \times 10^{^{-7}}\times \frac{\pi}{4}\times D_{_1}^{\prime2}/H_{_1}\\ &=2\pi ^{^3}\times 300\times 10^{^{-7}}\times 1.169^2/1.6\\ &=158.924\times 10^{^{-5}}\,\,\bigl( \Omega \bigr)\\ \end{aligned}
x10′′=ωμ0S1/H1=2πf×4π×10−7×4π×D1′2/H1=2π3×300×10−7×1.1692/1.6=158.924×10−5(Ω)
x 0 = x 10 k 1 H 1 / ( H 1 − k 1 H 2 ) = 158.924 × 1 0 − 5 × 0.753 × 1.6 / ( 1.6 − 0.753 × 1.323 ) = 317.121 × 1 0 − 5 ( Ω ) \begin{aligned} x_{_0}&=x_{_{10}}k_{_1}H_{_1}/\bigl( H_{_1}-k_{_1}H_{_2} \bigr)\\ &=158.924\times 10^{^{-5}}\times 0.753\times 1.6/\bigl( 1.6-0.753\times 1.323 \bigr)\\ &=317.121\times 10^{^{-5}}\bigl( \Omega \bigr)\\ \end{aligned} x0=x10k1H1/(H1−k1H2)=158.924×10−5×0.753×1.6/(1.6−0.753×1.323)=317.121×10−5(Ω)
(4)感应器漏电抗
x
s
x_s
xs 的计算:
x
s
=
ω
μ
0
S
1
−
S
2
H
2
x_s=\omega \mu _0\frac{S_1-S_2}{H_2}
xs=ωμ0H2S1−S2
式中:
-
x s x_s xs —— 感应器漏电抗 ( Ω \Omega Ω);
-
S 1 S_1 S1 —— 感应器线圈有效截面积 ( m 2 \text{m}^2 m2);
-
S 1 = π 4 × D 1 ′ 2 S_1=\frac{\pi}{4}\times D_{1}^{\prime2} S1=4π×D1′2
-
S 2 S_2 S2 —— 液态炉料有效截面积 ( m 2 \text{m}^2 m2);
-
S 2 = π 4 × D 2 ′ 2 S_2=\frac{\pi}{4}\times D_{2}^{\prime2} S2=4π×D2′2
-
ω \omega ω —— 角频率, ω = 2 π f \omega = 2\pi f ω=2πf(rad/s);
-
μ 0 \mu_0 μ0 —— 真空磁导率, μ 0 = 4 π × 1 0 − 7 \mu_0 = 4\pi \times 10^{-7} μ0=4π×10−7(H/m);
-
H 2 H_2 H2 —— 液态炉料高度(m)。
将已求得各参数值代入式
x
s
x_{s}
xs,得
x
s
=
2
π
f
×
4
π
×
1
0
−
7
×
π
4
(
D
l
′
2
−
D
2
′
2
)
/
H
2
=
2
π
3
f
×
1
0
−
7
×
(
D
l
′
2
−
D
2
′
2
)
/
H
2
=
2
π
3
×
300
×
1
0
−
7
×
(
1.16
9
2
−
0.88
1
2
)
/
1.323
=
83.042
×
1
0
−
5
(
Ω
)
\begin{aligned} x_{_{\mathrm{s}}}&=2\pi f\times 4\pi \times 10^{-7}\times \frac{\pi}{4}\bigl( D_{l}^{\prime2}-D_{2}^{\prime2} \bigr) /H_{_2}\\ &=2\pi ^3f\times 10^{-7}\times \bigl( D_{l}^{\prime2}-D_{2}^{\prime2} \bigr) /H_{_2}\\ &=2\pi ^3\times 300\times 10^{-7}\times \bigl( 1.169^2-0.881^2 \bigr) /1.323\\ &=83.042\times 10^{-5}\,\,\bigl( \Omega \bigr)\\ \end{aligned}
xs=2πf×4π×10−7×4π(Dl′2−D2′2)/H2=2π3f×10−7×(Dl′2−D2′2)/H2=2π3×300×10−7×(1.1692−0.8812)/1.323=83.042×10−5(Ω)
(5)炉料的换算系数
c
c
c:
c
=
1
(
r
2
x
0
)
2
+
(
1
+
x
s
+
x
2
m
x
0
)
2
c=\frac{1}{\bigl( \frac{r_2}{x_0} \bigr) ^2+\bigl( 1+\frac{x_s+x_{2m}}{x_0} \bigr) ^2}
c=(x0r2)2+(1+x0xs+x2m)21
式中:
- c c c —— 炉料的换算系数;
- r 2 r_2 r2 —— 炉料电阻 ( Ω \Omega Ω);
- x 0 x_0 x0 —— 磁通克服感应器外部空间所需的磁动势分量的电抗 ( Ω \Omega Ω);
- x s x_s xs —— 感应器漏电抗 ( Ω \Omega Ω);
- x 2 m x_{2m} x2m —— 炉料电抗 ( Ω \Omega Ω)。
将已求得各参数值代入式,得:
KaTeX parse error: Undefined control sequence: \- at position 60: ….420\times 10^{\̲-̲5}}{317.121\tim…
(6)液态炉料的换算电阻
c
2
′
c_{2}^{\prime}
c2′:
c
2
′
=
c
r
2
c_{2}^{\prime}=cr_2
c2′=cr2
将已求得各个参数值代入式,得
r
2
′
=
c
r
2
=
0.602
×
8.420
×
1
0
−
5
=
5.070
×
1
0
−
5
(
Ω
)
r_{2}^{\prime}=cr_2=0.602\times 8.420\times 10^{-5}=5.070\times 10^{-5}\,\,\left( \Omega \right)
r2′=cr2=0.602×8.420×10−5=5.070×10−5(Ω)
(7)液态炉料的换算电抗
x
2
′
x_{2}^{\prime}
x2′其计算式为:
x
2
′
=
c
[
x
s
+
x
2
m
+
(
x
s
+
x
2
m
)
2
+
r
2
2
x
0
]
x_{2}^{\prime}=c\left[ x_s+x_{2m}+\frac{\left( x_s+x_{2m} \right) ^2+r_{2}^{2}}{x_0} \right]
x2′=c[xs+x2m+x0(xs+x2m)2+r22]
式中:
- x 2 ′ x_2' x2′ —— 液态炉料的换算电抗(Ω);
- c c c —— 炉料的换算系数;
- x s x_s xs —— 感应器漏电抗(Ω);
- x 2 m x_{2m} x2m —— 炉料电抗(Ω);
- r 2 r_2 r2 —— 炉料电阻(Ω);
- x 0 x_0 x0 —— 磁通克服感应器外部空间所需的磁动势分量的电抗(Ω)。
将已求得各参数值代入上式,得
x
2
′
=
0.602
×
[
83.042
×
1
0
−
5
+
8.420
×
1
0
−
5
+
(
83.042
×
1
0
−
5
+
8.420
×
1
0
−
5
)
2
+
(
8.420
×
1
0
−
5
)
2
317.121
×
1
0
−
5
]
=
71.092
×
1
0
−
5
(
Ω
)
\begin{aligned} x_{2}^{\prime}&=0.602\times \bigl[ 83. 042\times 10^{-5}+8.420\times 10^{-5}\\ &+\frac{\bigl( 83.042\times 10^{-5}+8.420\times 10^{-5} \bigr) ^2+\bigl( 8.420\times 10^{-5} \bigr) ^2}{317.121\times 10^{-5}} \bigr]\\ &=71.092\times 10^{-5}(\Omega )\\\end{aligned}
x2′=0.602×[83.042×10−5+8.420×10−5+317.121×10−5(83.042×10−5+8.420×10−5)2+(8.420×10−5)2]=71.092×10−5(Ω)
(8)感应器线圈铜管的电阻 r 1 r_1 r1 与电抗 x 1 m x_{1m} x1m:
感应器线圈铜管的电阻
r
1
r_{1}
r1的计算式为:
r
1
=
k
r
ρ
1
π
D
1
′
H
1
δ
1
g
\boldsymbol{r}_1=\frac{k_{\mathrm{r}}\rho_1\pi D_1^{\prime}}{H_1\delta _1g}
r1=H1δ1gkrρ1πD1′
式中:
- r 1 r_1 r1 —— 感应器线圈铜管的电阻(Ω);
- k r k_r kr —— 电阻修正系数;
- ρ 1 \rho_1 ρ1 —— 室温至 80℃ 时电工铜的平均电阻率(Ω·m);
- D 1 ′ D_1' D1′ —— 感应器的计算直径(m);
- H 1 H_1 H1 —— 感应器线圈高度(m);
- δ 1 \delta_1 δ1 —— 感应器线圈炉料一侧铜管壁厚(m);
- g g g —— 感应器线圈填充系数。
感应器线圈铜管的电抗
x
1
m
x_{1m}
x1m 计算式为:
x
1
m
=
r
1
k
x
k
r
x_{1m}=r_1\frac{k_x}{k_r}
x1m=r1krkx
式中:
-
x 1 m x_{1m} x1m —— 感应器线圈铜管的电抗(Ω);
-
r 1 r_1 r1 —— 感应器线圈铜管的电阻(Ω);
-
k x k_x kx —— 电抗修正系数;
-
k r k_r kr —— 电阻修正系数。
-
δ 1 = π 2 Δ 1 = π 2 × 0.004 = 0.0063 ( m ) \delta _{_1}=\frac{\pi}{2}\varDelta _{_1}=\frac{\pi}{2}\times 0.004=0.0063(\mathrm{m)} δ1=2πΔ1=2π×0.004=0.0063(m)
经数值修约, δ 1 \delta_1 δ1 取 0.0065 m。
-
由于集肤效应,感应器线圈的电流主要集中在靠近炉料的一侧铜管表面,因此应合理设计铜管厚度以降低有功损耗。
-
当线圈炉料侧铜管的厚度 δ 1 \delta_1 δ1 与铜管的电流透入深度 Δ 1 \Delta_1 Δ1 的比值 δ 1 Δ 1 = π 2 \frac{\delta _1}{\Delta _1}=\frac{\pi}{2} Δ1δ1=2π时,导体的交流电阻值最小,有功损耗最低。工程上规定其最小厚度不得小于 1.35 Δ 1 1.35\Delta_1 1.35Δ1。
-
δ 1 b e s t = π 2 Δ 1 & δ 1 > = 1.35 Δ 1 \delta _1^{best}=\frac{\pi}{2}{\Delta _1} \quad \& \quad \delta _1>=1.35\Delta1 δ1best=2πΔ1&δ1>=1.35Δ1
感应器线圈电阻
r
1
r_{1}
r1 公式中填充系数
g
g
g 的计算式为:
g
=
b
1
b
1
+
c
1
g=\frac{b_1}{b_1+c_1}
g=b1+c1b1
式中:
-
g g g —— 感应器线圈填充系数;
-
b 1 b_1 b1 —— 单匝铜管轴向宽度(m);
-
c 1 c_1 c1 —— 匝间距(m)。
-
早期的文献规定感应器线圈填充系数 g g g 为 0.85~0.95,这是根据当时采用的 1/3 搭边法包扎绝缘带(如有机硅粉云母玻璃布带类)并进行浸漆处理工艺所确定的数值。
-
喷绝缘漆或采用其他绝缘喷涂工艺处理时,为了确保绝缘距离,感应器线圈的填充系数 g g g 通常取 0.762。若设备在高海拔地区或两端电压较高的情况下运行,匝间距可适度放大。
电阻 r 1 r_1 r1、电抗 x 1 m x_{1m} x1m的修正系数 k r k_r kr和 k x k_x kx按图中曲线函数进行计算:
k r = f ( δ l Δ l ) = f ( 0.0065 0.004 ) = f ( 1.583 ) = 1.5 k x = f ( δ l Δ l ) = f ( 0.0065 0.004 ) = f ( 1.583 ) = 1.4 k_{_{\mathrm{r}}}=f\bigl( \frac{\delta _{_{\mathrm{l}}}}{\varDelta _{_{\mathrm{l}}}} \bigr) =f\bigl( \frac{0.0065}{0.004} \bigr) =f\left( 1.583 \right) =1.5\\k_{_{\mathrm{x}}}=f\bigl( \frac{\delta _{_{\mathrm{l}}}}{\varDelta _{_{\mathrm{l}}}} \bigr) =f\bigl( \frac{0.0065}{0.004} \bigr) =f\left( 1.583 \right) =1.4 kr=f(Δlδl)=f(0.0040.0065)=f(1.583)=1.5kx=f(Δlδl)=f(0.0040.0065)=f(1.583)=1.4
则:
r
i
=
k
r
ρ
i
π
D
i
′
/
(
H
l
δ
1
g
)
=
1.5
×
2
×
1
0
−
8
×
π
×
1.169
/
(
1.6
×
0.0065
×
0.762
)
=
1.391
×
1
0
−
5
(
Ω
)
\begin{split} r_{\mathrm{i}}=& k_{{}_{\mathrm{r}}} \rho_{\mathrm{i}}\pi D_{\mathrm{i}}^{\prime}\left/\left(H_{{}_{ \mathrm{l}}}\delta_{\mathrm{1}}g\right)\right.\\ =& 1.5 \times 2 \times 10^{{}^{-8}} \times \pi \times 1.169 / \big(1.6 \times 0.0065 \times 0.762\big)\\ =& 1.391 \times 10^{{}^{-5}} \left(\Omega\right) \end{split}
ri===krρiπDi′/(Hlδ1g)1.5×2×10−8×π×1.169/(1.6×0.0065×0.762)1.391×10−5(Ω)
x 1 m = r l k x k r = 1.391 × 1 0 − 5 × 1.4 1.5 = 1.298 × 1 0 − 5 ( Ω ) \begin{aligned} x_{_{1\mathrm{m}}}&=r_{_{\mathrm{l}}}\frac{k_{_{\mathrm{x}}}}{k_{_{\mathrm{r}}}}=1.391\times 10^{^{-5}}\times \frac{1.4}{1.5}\\ &=1.298\times 10^{^{-5}}\,\,(\Omega )\\\end{aligned} x1m=rlkrkx=1.391×10−5×1.51.4=1.298×10−5(Ω)
(9)感应器的等效电阻
r
r
r、电抗
x
x
x 和阻抗
z
z
z:
r
=
r
1
+
r
2
∣
x
=
x
1
m
+
x
2
∣
z
=
r
2
+
x
2
r=r_{_1}+r_{_2}^{^{\shortmid}}\\x=x_{{_1}_{\mathrm{m}}}+x_{_2}^{^{\shortmid}}\\z=\sqrt{r^{^2}+x^{^2}}
r=r1+r2∣x=x1m+x2∣z=r2+x2
将已求得各参数值代入上式,得:
r
=
r
1
+
r
2
′
=
1.391
×
1
0
−
5
+
5.070
×
1
0
−
5
=
6.461
×
1
0
−
5
(
Ω
)
\begin{aligned} \mathbf{r} &= \mathbf{r}_{\mathbf{1}} + \mathbf{r}_{\mathbf{2}}^{\prime} = 1.391 \times 10^{-5} + 5.070 \times 10^{-5} \\ &= 6.461 \times 10^{-5} \,\, (\Omega)\end{aligned}
r=r1+r2′=1.391×10−5+5.070×10−5=6.461×10−5(Ω)
x = x 1 m + x 2 ′ = 1.298 × 1 0 − 5 + 71.092 × 1 0 − 5 = 72.390 × 1 0 − 5 ( Ω ) \begin{aligned} x&=x_{1\mathrm{m}}+x_{2}^{\prime}=1.298\times 10^{-5}+71.092\times 10^{-5}\\ &=72.390\times 10^{-5}\mathbf{(}\Omega \mathbf{)}\\\end{aligned} x=x1m+x2′=1.298×10−5+71.092×10−5=72.390×10−5(Ω)
z = r 2 + x 2 = ( 6.461 × 1 0 − 5 ) 2 + ( 72.390 × 1 0 − 5 ) 2 = 72.678 × 1 0 − 5 ( Ω ) \begin{aligned} z&=\sqrt{r^{^2}+x^{^2}}=\sqrt{\left( 6.461\times 10^{^{-5}} \right) ^2+\left( 72.390\times 10^{^{-5}} \right) ^2}\\ &=72.678\times 10^{^{-5}}\left( \Omega \right)\\\end{aligned} z=r2+x2=(6.461×10−5)2+(72.390×10−5)2=72.678×10−5(Ω)
(10)感应器的电效率
η
u
\eta_u
ηu:
η
u
=
r
2
′
r
\eta _{_{\mathrm{u}}}=\frac{r_{_2}^{\prime}}{r}
ηu=rr2′
将已求得各参数值代入式,得:
η
u
=
r
2
′
r
=
5.070
×
1
0
−
5
6.461
×
1
0
−
5
=
0.7848
\eta _{_{\mathrm{u}}}=\frac{r_{_2}^{\prime}}{r}=\frac{5.070\times 10^{^{-5}}}{6.461\times 10^{^{-5}}}=0.7848
ηu=rr2′=6.461×10−55.070×10−5=0.7848
(11)平均有功功率
P
2
P_2
P2:
P
2
=
η
u
P
P_2=\eta _{\mathrm{u}}P
P2=ηuP
将已求得各参数值代入式,得:
P
2
=
η
u
P
=
0.7848
×
3600
=
2825.231
(
k
W
)
P_2=\eta _{~u}P=0.7848\times 3600=2825.231~~(kW)
P2=η uP=0.7848×3600=2825.231 (kW)
(12)感应器的功率因数
cos
φ
\cos\varphi
cosφ :
cos
φ
=
r
z
\cos \varphi =\frac{r}{z}
cosφ=zr
将已求得各参数值代入式,得:
cos
φ
=
r
z
=
6.461
×
1
0
−
5
72.678
×
1
0
−
5
=
0.089
\cos \varphi =\frac{r}{z}=\frac{6.461\times 10^{^{-5}}}{72.678\times 10^{^{-5}}}=0.089
cosφ=zr=72.678×10−56.461×10−5=0.089
(13)感应器内的电流
I
u
′
I_u^{\prime}
Iu′:
I
u
′
=
P
2
r
2
′
I_{\mathbf{u}}^{\prime}=\sqrt{\frac{P_{_2}}{r_{_2}^{^{\prime}}}}
Iu′=r2′P2
将已求得各参数值代入式,得:
I
u
′
=
P
2
r
2
′
=
2825.231
×
1
0
3
5.070
×
1
0
5
=
23.606
×
1
0
4
(
A
)
I_{\mathrm{u}}^{\prime}=\sqrt{\frac{P_{_2}}{r_{_2}^{\prime}}}=\sqrt{\frac{2825.231\times 10^3}{5.070\times 10^{5}}}=23.606\times 10^4\,\,(\mathrm{A)}
Iu′=r2′P2=5.070×1052825.231×103=23.606×104(A)
(14)感应器内的电流密度
δ
u
\delta_u
δu:
δ
u
=
I
u
′
×
1
0
−
6
H
1
Δ
1
g
\delta _{_{\mathrm{u}}}=\frac{{I_{_{\mathrm{u}}}}^{\prime}\times 10^{-6}}{H_{_1}\Delta _{_1}g}
δu=H1Δ1gIu′×10−6
当
δ
1
>
Δ
1
\delta_1 > \Delta_1
δ1>Δ1 时:将已求得各参数值代入式,得:
δ
u
=
I
u
′
×
1
0
−
6
H
1
Δ
1
g
=
23.606
×
1
0
4
×
1
0
−
6
1.6
×
0.004
×
0.762
=
48.405
×
1
0
4
(
A
/
m
m
2
)
\delta _{_{\mathrm{u}}}=\frac{I_{_{\mathrm{u}}}^{^{\prime}}\times 10^{^{-6}}}{H_{_1}\Delta _{_1}g}=\frac{23.606\times 10^4\times 10^{-6}}{1.6\times 0.004\times 0.762}\\=48.405\times 10^4\,\,(\mathrm{A} /\mathrm{mm}^2)
δu=H1Δ1gIu′×10−6=1.6×0.004×0.76223.606×104×10−6=48.405×104(A/mm2)
(15)感应器上的电压
U
u
′
U_u'
Uu′:
U
u
′
=
I
u
′
×
z
U_{u}^{\prime}=I_{u}^{\prime}\times z
Uu′=Iu′×z
将已求得各参数值代入式,得:
KaTeX parse error: Undefined control sequence: \- at position 116: ….678\times 10^{\̲-̲5}\\ &=171.561 …
(16)感应器的匝数
ω
′
\omega'
ω′:
ω
′
=
U
a
/
U
u
′
\omega ^{\prime}=U_a/U_{u}^{\prime}
ω′=Ua/Uu′
式中:
- U a U_a Ua —— 忽略逆变换相重叠角的变频电源输出电压(V),本例 U a = 1060 V U_a = 1060 \, \text{V} Ua=1060V。
将已求得各参数值代入式,得
ω
∣
=
U
a
/
U
u
′
=
1060
×
2
/
171.561
=
12.357
\omega ^{\shortmid}=U_{\mathrm{a}}/U_{\mathrm{u}}^{\prime}=1060\times 2/171.561=12.357
ω∣=Ua/Uu′=1060×2/171.561=12.357
取12匝,取12匝时,感应器线圈两端电压为 1029 V。
并联谐振的感应熔炼电炉负载接法,一般都采用电容升压方式。这种方式可使负载(感应器)两端电压高、电流小、损耗低、变频电源启动性能好。最早考虑采用这种电容升压谐振电路,如下图。是由于当炉子使用一段时间后,炉衬变薄,炉料内径尺寸变大,负载变化,因此通过调整电容升压电路的串联和并联电容器容量,始终使炉子的负载能阻抗匹配。
感应器两端电压的计算式为(所以可以看出来,
U
L
U_{L}
UL的线圈就是感应线圈,
U
d
U_{d}
Ud是原始电压,然后利用变频得到变频电源(升频)的输出电压
U
H
U_{H}
UH,然后按照串联谐振升压提供给线圈电压):
U
L
≈
U
H
(
1
+
C
l
C
2
)
U_{_{\mathrm{L}}}\approx U_{_{\mathrm{H}}}\bigl( 1+\frac{C_{_{\mathrm{l}}}}{C_{_2}} \bigr)
UL≈UH(1+C2Cl)
式中:
- U L U_L UL —— 感应器两端电压(V);
- U H U_H UH —— 变频电源输出电压(V);
- C 1 C_1 C1 —— 并联电容(kVar);
- C 2 C_2 C2 —— 串联电容(kVar)。
由上式可知,当 C 1 = C 2 C_1 = C_2 C1=C2 时, U L ≈ 2 U H U_L \approx 2U_H UL≈2UH,即感应器线圈两端电压近似为变频电源输出电压的2倍,这也使得这种升压电路被称为**“倍压电路”的来源**。当 C 1 > C 2 C_1 > C_2 C1>C2 时, U L U_L UL 较高;当 C 1 < C 2 C_1 < C_2 C1<C2 时, U L U_L UL 较低。通过调整 C 1 C_1 C1 和 C 2 C_2 C2 的容量大小,即可实现负载的阻抗匹配。当炉衬变薄,炉料内径变大时,将并联电容 C 1 C_1 C1 减少、串联电容 C 2 C_2 C2 增加,以使变频电源输出额定功率。
本例的线圈连接方法:
- 铜管尺寸限制:由于铜管的尺寸限制,选择了每组线圈绕12匝。
- 两组线圈并联接法:将线圈分成两组,且每组分别绕制一定匝数,并且这两组线圈是并联的。
- 反向绕制:两组线圈的绕制方向不同,一组是左旋,一组是右旋。这种设计有助于平衡电磁场,减少相邻匝之间的电压干扰。
- 中间点为等电位:两组线圈的中间点作为一个电极,等电位的中间点能够降低上下线圈之间的匝间电压差,从而优化电压分布,减少电气损耗和匝间干扰。
利用这个设计通过对线圈的结构安排(反向绕制和并联连接),来优化电磁场分布,并降低匝间电压,提升设备效率。
(17)感应器线圈铜管外截面宽度
b
b
b:
b
=
H
1
g
/
(
ω
′
+
1
)
b=H_1g/\left( \omega ^{\prime}+1 \right)
b=H1g/(ω′+1)
将已求得各参数值代入式子,得
b
=
H
1
g
/
(
ω
′
+
1
)
=
1.6
×
0.762
/
(
12
×
2
+
1
)
=
0.0488
(
m
)
\begin{aligned} b&=H_1g/ \left( \omega ^{\prime}+1 \right) \,\,=1.6\times 0.762/ \left( 12\times 2+1 \right)\\ &=0.0488 \left( \mathrm{m} \right)\\\end{aligned}
b=H1g/(ω′+1)=1.6×0.762/(12×2+1)=0.0488(m)
选取外截面尺寸 48 mm × 46 mm、感应器线圈炉料侧的铜管壁厚
δ
1
\delta_1
δ1 为 6.5 mm、另外三个边
δ
2
\delta_2
δ2 为 3.5 mm 的异形铜管。
(18)水路支路的确定方法如下:
1)根据铜的水冷条件算线圈铜管的过水截面积公式为:
S
=
P
(
1
−
η
)
×
1
0
3
4.18
v
0
(
T
1
−
T
0
)
S=\frac{P(1-\eta )\times 10^3}{4.18v_{_0}(T_{_1}-T_{_0})}
S=4.18v0(T1−T0)P(1−η)×103
式中:
- S S S——线圈铜管过水截面积(mm²);
- P P P——为额定功率(kW),取 3600 kW;
- η \eta η——总效率, η = 0.725 \eta = 0.725 η=0.725;
- ν 0 \nu_0 ν0——铜管内冷却水流速,取 1.2 m/s;
- T 0 T_0 T0——流入线圈冷却水温度(℃),取 18℃;
- T 1 T_1 T1——流出线圈冷却水温度(℃),取 40℃。
则:
S
=
3600
×
(
1
−
0.725
)
×
1
0
3
4.18
×
1.2
×
(
40
−
18
)
=
8971.292
(
m
m
2
)
S=\frac{3600\times \left( 1-0.725 \right) \times 10^3}{4.18\times 1.2\times \left( 40-18 \right)}=8971.292 (\mathrm{mm}^2)
S=4.18×1.2×(40−18)3600×(1−0.725)×103=8971.292(mm2)
2)当冷却水通过感应器线圈时,铜管的过水总高度
h
h
h计算式为:
h
=
S
b
−
2
δ
2
h=\frac{S}{b-2\delta _{_2}}
h=b−2δ2S
式中:
- h h h——铜管的过水总高度(mm);
- b b b——铜管外截面宽度(mm);
- S S S——线圈铜管过水截面积(mm²);
- δ 2 \delta_2 δ2——铜管另外三个边壁厚(mm)。
则:
h
=
S
b
−
2
δ
2
=
8971.292
48
−
2
×
3.5
=
218.812
(
m
m
)
h=\frac{S}{b-2\delta _{_2}}=\frac{8971.292}{48-2\times 3.5}=218.812(\mathrm{mm)}
h=b−2δ2S=48−2×3.58971.292=218.812(mm)
3)水路支数的计算式为:
n
=
h
a
−
(
δ
1
+
δ
2
)
n=\frac{h}{a-\left( \delta _1+\delta _2 \right)}
n=a−(δ1+δ2)h
式中:
- n n n —— 水路支数(条);
- h h h —— 铜管的过水总高度(mm);
- a a a —— 铜管外截面高度(mm);
- δ 1 \delta_1 δ1 —— 感应器线圈炉料一侧铜管壁厚(mm);
- δ 2 \delta_2 δ2 —— 铜管另外三个边壁厚(mm)。
则:
n
=
h
a
−
(
δ
1
+
δ
2
)
=
218.812
46
−
(
6.5
+
3.5
)
=
6
(
条
)
n=\frac{h}{a-\bigl( \delta _{_1}+\delta _{_2} \bigr)}=\frac{218.812}{46-\bigl( 6.5+3.5 \bigr)}=6(条)
n=a−(δ1+δ2)h=46−(6.5+3.5)218.812=6(条)
采用外截面尺寸 48mm × 46mm(宽 × 高)、内截面尺寸 41mm × 36mm(宽 × 高)的铜管,
水路 6 条 即可满足感应器线圈水冷要求。
(19)补偿电热电容器容量 Q c Q_c Qc:
1)品质因数
Q
Q
Q:
Q
=
z
r
=
72.678
×
1
0
−
5
6.461
×
1
0
−
5
=
11.250
Q=\frac{z}{r}=\frac{72.678\times 10^{^{-5}}}{6.461\times 10^{^{-5}}}=11.250
Q=rz=6.461×10−572.678×10−5=11.250
Q c 1 = P Q = 3600 × 11.250 = 40500 ( k V a r ) Q_{c1}=PQ=3600\times 11.250=40500(kVar) Qc1=PQ=3600×11.250=40500(kVar)
2)变频电源频率为 300 Hz,采用国产晶闸管逆变,触发超前角
φ
=
3
0
∘
\varphi = 30^\circ
φ=30∘,则:
tan
φ
=
tan
3
0
∘
=
0.577
Q
c
2
=
P
tan
φ
=
3600
×
0.577
=
2077.2
(
k
V
a
r
)
\tan \varphi =\tan 30^{\circ}\,\, =0.577\\ Q_{c2}=P\tan \varphi =3600\times 0.577=2077.2 (kVar)
tanφ=tan30∘=0.577Qc2=Ptanφ=3600×0.577=2077.2(kVar)
3)补偿电容器容量
Q
c
Q_c
Qc:
Q
c
=
Q
c
1
+
Q
c
2
=
40500
+
2077.2
=
42577.2
(
k
V
a
r
)
\begin{aligned} Q_{c}&=Q_{c1}+Q_{c2}=40500+2077.2\\ &=42577.2(\mathrm{kVar)}\\\end{aligned}
Qc=Qc1+Qc2=40500+2077.2=42577.2(kVar)
4)补偿到
cos
φ
=
1
\cos\varphi = 1
cosφ=1 时电热电容器台数:
N
=
Q
c
C
e
×
(
U
c
U
a
)
2
N=\frac{Q_{_{\mathrm{c}}}}{C_{_{\mathrm{e}}}}\times \bigl( \frac{U_{_{\mathrm{c}}}}{U_{_{\mathrm{a}}}} \bigr) ^{_2}
N=CeQc×(UaUc)2
式中:
- N N N —— 电热电容器数量(台);
- Q c Q_c Qc —— 补偿电热电容器总容量(kVar);
- C C C —— 电热电容器额定容量(kVar),本例: C = 2000 C = 2000 C=2000 kVar;
- U c U_c Uc —— 电热电容器额定电压(V),本例: U c = 1200 U_c = 1200 Uc=1200 V;
- U a U_a Ua —— 忽略逆变换相重叠角的变频电源输出电压(V),本例: U a = 1060 U_a = 1060 Ua=1060 V。
若选用RFM 1.2-2000-0.3 S电热电容器,则:
N
=
Q
c
C
e
×
(
U
c
U
a
)
2
=
42577.2
2000
×
(
1200
1060
)
2
=
54566.7
2000
=
27.3
(台),取
28
台
N=\frac{Q_{_{\mathrm{c}}}}{C_{_{\mathrm{e}}}}\times \bigl( \frac{U_{_{\mathrm{c}}}}{U_{_{\mathrm{a}}}} \bigr) ^{_2}=\frac{42577.2}{2000}\times \bigl( \frac{1200}{1060} \bigr) ^{_2}\\=\small{\frac{54566.7}{2000}=}27.3\text{(台),取}28\text{台}
N=CeQc×(UaUc)2=200042577.2×(10601200)2=200054566.7=27.3(台),取28台
4. 驼峰高度计算
感应电炉熔化炉料的驼峰高度 h ′ h' h′ 计算方法如下:
液态炉料静压力
F
y
F_y
Fy 为:
F
y
=
h
′
γ
y
F_y=h^{\prime}\gamma _y
Fy=h′γy
式中:
- F y F_y Fy —— 液态炉料静压力(kg/m³);
- h ′ h' h′ —— 驼峰高度(m);
- γ y \gamma_y γy —— 炉料液态密度(kg/m³)。
电磁搅拌力
F
j
F_j
Fj 为:
F
j
=
3.16
×
1
0
−
2
μ
r
ρ
2
f
×
P
2
S
F_{_{\mathrm{j}}}=3.16\times 10^{^{-2}}\sqrt{\frac{\mu _{_{\mathrm{r}}}}{\rho _{_2}f}}\times \frac{P_{_2}}{S}
Fj=3.16×10−2ρ2fμr×SP2
式中:
- F j F_j Fj —— 电磁搅拌力(kg/m³);
- μ r \mu_r μr —— 炉料相对磁导率,非磁性炉料或磁性炉料在过居里点温度以后, μ r = 1 \mu_r = 1 μr=1;
- ρ 2 \rho_2 ρ2 —— 液态炉料平均电阻率(Ω·m);
- f f f —— 变频电源标称频率(Hz);
- P 2 P_2 P2 —— 消耗于炉料的有功功率, P 2 = P T η u P_2 = P_T \eta_u P2=PTηu(kW);
- S S S —— 被感应器包围的炉料表面积(m²)。
S = π D 2 H 2 S = \pi D_2 H_2 S=πD2H2
式中:
- D 2 D_2 D2 —— 坩埚内径(m);
- H 2 H_2 H2 —— 熔液高度,“驼峰”下沿至坩埚底面的高度(m)。
令
F
y
=
F
j
F_y = F_j
Fy=Fj,可求出驼峰高度
h
′
h'
h′:
h
′
=
3.16
×
1
0
−
2
μ
r
ρ
2
f
×
P
2
S
×
1
r
y
h^{\prime}=3.16\times 10^{^{-2}}\sqrt{\frac{\mu _{_{\mathrm{r}}}}{\rho _{_2}f}}\times \frac{P_{_2}}{S}\times \frac{1}{r_{_y}}
h′=3.16×10−2ρ2fμr×SP2×ry1
将
μ
r
=
1
\mu_r = 1
μr=1、
ρ
2
=
1.366
×
1
0
−
6
Ω
⋅
m
\rho_2 = 1.366 \times 10^{-6} \ \Omega \cdot m
ρ2=1.366×10−6 Ω⋅m、
f
=
300
f = 300
f=300 Hz、
γ
y
=
6900
\gamma_y = 6900
γy=6900 kg/m³、
S
=
π
D
2
H
2
=
π
×
0.915
×
1.323
=
3.803
S = \pi D_2 H_2 = \pi \times 0.915 \times 1.323 = 3.803
S=πD2H2=π×0.915×1.323=3.803 m²、
P
2
=
P
η
u
=
3600
×
0.7848
=
2825.231
P_2 = P \eta_u = 3600 \times 0.7848 = 2825.231
P2=Pηu=3600×0.7848=2825.231 kW 代入上式,则:
h
′
=
3.16
×
1
0
−
2
1
1.366
×
1
0
−
6
×
300
×
2825.231
3.803
×
1
6900
=
0.168
(
m
)
\begin{aligned} h^{\prime}&=3.16\times 10^{-2}\sqrt{\frac{1}{1.366\times 10^{-6}\times 300}}\times \frac{2825.231}{3.803}\times \frac{1}{6900}\\ &=0.168(\mathrm{m)}\\\end{aligned}
h′=3.16×10−21.366×10−6×3001×3.8032825.231×69001=0.168(m)
结论:经计算,3600 kW、300 Hz、6 t 铸铁熔炼炉的驼峰高度
h
′
=
0.168
h' = 0.168
h′=0.168 m,电磁搅拌强度
h
′
D
2
=
0.184
\frac{h'}{D_2} = 0.184
D2h′=0.184,查第二讲表,
h
′
D
2
\frac{h'}{D_2}
D2h′ 为 0.184,在 0.125 ~ 0.2 合理的范围内。
参考
李韵豪老师的《铸造工业的感应加热》系列讲座(我存在我github上啦):YanxinTong/Principle-of-Induction-Furnace: 感应电炉的相关原理文件