主成分分析

降维算法,它能将多个指标转换为少数几 个主成分,这些主成分是原始变量的线性组合,且彼此之间 互不相关,其能反映出原始数据的大部分信息。一般来说, 当研究的问题涉及到多变量且变量之间存在很强的相关性时, 我们可考虑使用主成分分析的方法来对数据进行简化。

目录

PCA计算步骤

写入论文

​ 主成分缺点

 主成分分析可以解决多重共线性问题

      解决多重共线性问题方案:

在stata中回归结果

 对主成分分析看法​


PCA计算步骤

 

 

 (2)中可以降成2、3维之后进行画图分析,可视化聚类效果

写入论文

 主成分缺点

(1)中可以用topsis 

 主成分分析可以解决多重共线性问题

      解决多重共线性问题方案:

       (1)降维

       (2)扩大样本n

       (3) 岭回归

       (4)逐步回归

在stata中回归结果

 对主成分分析看法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值