看完让你的RSA提升一个台阶 [GKCTF 2021]RRRRsa

本文由Breeze分享,介绍了一道RSA题目[GKCTF 2021]RRRRsa的解题过程,涉及费马定理的应用。通过求解p和q,阐述了如何利用二项式展开和费马小定理解决赛题中的问题。适合对密码学感兴趣的读者学习。
摘要由CSDN通过智能技术生成

阅读须知:

探索者安全团队技术文章仅供参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作,由于传播、利用本公众号所提供的技术和信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任,如有侵权烦请告知,我们会立即删除并致歉,创作不易转载请标明出处.感谢!

我是 Breeze ,今天我给大家分享一个关于RSA的题目,带大家领略 密码学 的魅力。

今天开始前,我们先学习一下 费马定理

费马定理

若 p为素数,则对任意a有

ap = 1 (mod p)

可以变形为 ap = a (mod p)

[GKCTF 2021]RRRRsa

赛题复现https://www.nssctf.cn/problem/1393

整理整理我们知道的信息

1710249877379.png

求解p

首先对于 hint1,我们对其进行二项式展开。在这里我给大家具体讲讲为什么展开是这个样子。

1710249954267.png

对于hint2,我们对其使用 费马小定理,因为它的指数是q1。我们将其改写

1710249984944.png

我们来对比一下 hint1和hint2

1710250012184.png

我们给第一个式子乘以 2021202020, 第二个式子幂方202020次。再乘以2021202020

1710250037849.png

#根据c1 = pow(p,e1,n1)
q1=n1//p1
d=Crypto.Util.number.inverse(e1,(p1-1)*(q1-
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值