用户新增预测挑战赛NO.1

赛题背景

讯飞开放平台针对不同行业、不同场景提供相应的AI能力和解决方案,赋能开发者的产品和应用,帮助开发者通过AI解决相关实际问题,实现让产品能听会说、能看会认、能理解会思考。

用户新增预测是分析用户使用场景以及预测用户增长情况的关键步骤,有助于进行后续产品和应用的迭代升级。

赛事任务

本次大赛提供了讯飞开放平台海量的应用数据作为训练样本,参赛选手需要基于提供的样本构建模型,预测用户的新增情况。

赛题数据集

赛题数据由约62万条训练集、20万条测试集数据组成,共包含13个字段。其中uuid为样本唯一标识,eid为访问行为ID,udmap为行为属性,其中的key1到key9表示不同的行为属性,如项目名、项目id等相关字段,common_ts为应用访问记录发生时间(毫秒时间戳),其余字段x1至x8为用户相关的属性,为匿名处理字段。target字段为预测目标,即是否为新增用户。

Baseline:

# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np
# 从 sklearn.tree 模块中导入 DecisionTreeClassifier 类
# DecisionTreeClassifier 用于构建决策树分类模型
from sklearn.tree import DecisionTreeClassifier


# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train_data = pd.read_csv('用户新增预测挑战赛公开数据/train.csv')
# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'test.csv'
test_data = pd.read_csv('用户新增预测挑战赛公开数据/test.csv')


# 3. 将 'udmap' 列进行 One-Hot 编码 
# 数据样例:
#                    udmap  key1  key2  key3  key4  key5  key6  key7  key8  key9
# 0           {'key1': 2}     2     0     0     0     0     0     0     0     0
# 1           {'key2': 1}     0     1     0     0     0     0     0     0     0
# 2  {'key1': 3, 'key2': 2}   3     2     0     0     0     0     0     0     0

# 在 python 中, 形如 {'key1': 3, 'key2': 2} 格式的为字典类型对象, 通过key-value键值对的方式存储
# 而在本数据集中, udmap实际是以字符的形式存储, 所以处理时需要先用eval 函数将'udmap' 解析为字典

# 具体实现代码:
# 定义函数 udmap_onethot,用于将 'udmap' 列进行 One-Hot 编码
def udmap_onethot(d):
    v = np.zeros(9)  # 创建一个长度为 9 的零数组
    if d == 'unknown':  # 如果 'udmap' 的值是 'unknown'
        return v  # 返回零数组
    d = eval(d)  # 将 'udmap' 的值解析为一个字典
    for i in range(1, 10):  # 遍历 'key1' 到 'key9', 注意, 这里不包括10本身
        if 'key' + str(i) in d:  # 如果当前键存在于字典中
            v[i-1] = d['key' + str(i)]  # 将字典中的值存储在对应的索引位置上
            
    return v  # 返回 One-Hot 编码后的数组

# 注: 对于不理解的步骤, 可以逐行 print 内容查看
# 使用 apply() 方法将 udmap_onethot 函数应用于每个样本的 'udmap' 列
# np.vstack() 用于将结果堆叠成一个数组
train_udmap_df = pd.DataFrame(np.vstack(train_data['udmap'].apply(udmap_onethot)))
test_udmap_df = pd.DataFrame(np.vstack(test_data['udmap'].apply(udmap_onethot)))
# 为新的特征 DataFrame 命名列名
train_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
test_udmap_df.columns = ['key' + str(i) for i in range(1, 10)]
# 将编码后的 udmap 特征与原始数据进行拼接,沿着列方向拼接
train_data = pd.concat([train_data, train_udmap_df], axis=1)
test_data = pd.concat([test_data, test_udmap_df], axis=1)


# 4. 编码 udmap 是否为空
# 使用比较运算符将每个样本的 'udmap' 列与字符串 'unknown' 进行比较,返回一个布尔值的 Series
# 使用 astype(int) 将布尔值转换为整数(0 或 1),以便进行后续的数值计算和分析
train_data['udmap_isunknown'] = (train_data['udmap'] == 'unknown').astype(int)
test_data['udmap_isunknown'] = (test_data['udmap'] == 'unknown').astype(int)


# 5. 提取 eid 的频次特征
# 使用 map() 方法将每个样本的 eid 映射到训练数据中 eid 的频次计数
# train_data['eid'].value_counts() 返回每个 eid 出现的频次计数
train_data['eid_freq'] = train_data['eid'].map(train_data['eid'].value_counts())
test_data['eid_freq'] = test_data['eid'].map(train_data['eid'].value_counts())


# 6. 提取 eid 的标签特征
# 使用 groupby() 方法按照 eid 进行分组,然后计算每个 eid 分组的目标值均值
# train_data.groupby('eid')['target'].mean() 返回每个 eid 分组的目标值均值
train_data['eid_mean'] = train_data['eid'].map(train_data.groupby('eid')['target'].mean())
test_data['eid_mean'] = test_data['eid'].map(train_data.groupby('eid')['target'].mean())


# 7. 提取时间戳
# 使用 pd.to_datetime() 函数将时间戳列转换为 datetime 类型
# 样例:1678932546000->2023-03-15 15:14:16
# 注: 需要注意时间戳的长度, 如果是13位则unit 为 毫秒, 如果是10位则为 秒, 这是转时间戳时容易踩的坑
# 具体实现代码:
train_data['common_ts'] = pd.to_datetime(train_data['common_ts'], unit='ms')
test_data['common_ts'] = pd.to_datetime(test_data['common_ts'], unit='ms')

# 使用 dt.hour 属性从 datetime 列中提取小时信息,并将提取的小时信息存储在新的列 'common_ts_hour'
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
test_data['common_ts_hour'] = test_data['common_ts'].dt.hour


# 8. 加载决策树模型进行训练(直接使用sklearn中导入的包进行模型建立)
clf = DecisionTreeClassifier()
# 使用 fit 方法训练模型
# train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1) 从训练数据集中移除列 'udmap', 'common_ts', 'uuid', 'target'
# 这些列可能是特征或标签,取决于数据集的设置
# train_data['target'] 是训练数据集中的标签列,它包含了每个样本的目标值
clf.fit(
    train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),  # 特征数据:移除指定的列作为特征
    train_data['target']  # 目标数据:将 'target' 列作为模型的目标进行训练
)


# 9. 对测试集进行预测,并保存结果到result_df中
# 创建一个DataFrame来存储预测结果,其中包括两列:'uuid' 和 'target'
# 'uuid' 列来自测试数据集中的 'uuid' 列,'target' 列将用来存储模型的预测结果
result_df = pd.DataFrame({
    'uuid': test_data['uuid'],  # 使用测试数据集中的 'uuid' 列作为 'uuid' 列的值
    'target': clf.predict(test_data.drop(['udmap', 'common_ts', 'uuid'], axis=1))  # 使用模型 clf 对测试数据集进行预测,并将预测结果存储在 'target' 列中
})


# 10. 保存结果文件到本地
# 将结果DataFrame保存为一个CSV文件,文件名为 'submit.csv'
# 参数 index=None 表示不将DataFrame的索引写入文件中
result_df.to_csv('submit.csv', index=None)

分数:0.627

具体实践步骤:

首先导入了需要用到的库,包括 pandas和“决策树分类器”等。接着读取数据:通过使用 pd.read_csv 函数从文件中读取训练集和测试集数据,将其存储在数据框中。

再者对特征工程进行处理, 使用udmap_onethot 函数进行了预处理,将其转换为一个长度为9的向量,表示每个key是否存在。对 udmap 特征进行编码,生成 udmap_isunknown 特征。将处理后的 udmap 特征与原始数据拼接起来,形成新的数据框。最后使用决策树模型训练和预测,使用 fit 函数对训练集中的特征和目标进行拟合,训练了决策树模型。将预测结果和相应的 uuid 组成一个DataFrame,将其保存submit.csv 文件中。
 

EDA:

# 时间数据处理
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
test_data['common_ts_hour'] = test_data['common_ts'].dt.hour
 
train_data['common_ts_day'] = train_data['common_ts'].dt.day
test_data['common_ts_day'] = test_data['common_ts'].dt.day
 
train_data['commons_ts_week']=train_data['common_ts'].dt.isocalendar().week.astype(np.float32)
test_data['commons_ts_week']=test_data['common_ts'].dt.isocalendar().week.astype(np.float32)
# 对数据x8进行分析处理
train_data['x8_freq'] = train_data['x8'].map(train_data['x8'].value_counts()).astype(int)
test_data['x8_freq'] = test_data['x8'].map(train_data['x8'].value_counts()).astype(int)
train_data['x8_mean'] = train_data['x8'].map(train_data.groupby('x8')['target'].mean()).astype(int)
test_data['x8_mean'] = test_data['x8'].map(train_data.groupby('x8')['target'].mean()).astype(int)
test_data
# 使用train_data.info() 进行查看分析。
train_data.info()
train_data_finall=train_data.drop(['udmap','common_ts','uuid','target','x3'],axis=1).astype(np.float32).isna().sum(axis=0)
test_data_finall=test_data.drop(['udmap','common_ts','uuid','x3'],axis=1).astype(np.float32).isna().sum(axis=0)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 620356 entries, 0 to 620355
Data columns (total 39 columns):
 #   Column           Non-Null Count   Dtype         
---  ------           --------------   -----         
 0   uuid             620356 non-null  int64         
 1   eid              620356 non-null  int64         
 2   udmap            620356 non-null  object        
 3   common_ts        620356 non-null  datetime64[ns]
 4   x1               620356 non-null  int64         
 5   x2               620356 non-null  int64         
 6   x3               620356 non-null  int64         
 7   x4               620356 non-null  int64         
 8   x5               620356 non-null  int64         
 9   x6               620356 non-null  int64         
 10  x7               620356 non-null  int64         
 11  x8               620356 non-null  int64         
 12  target           620356 non-null  int64         
 13  udmap_isunknown  620356 non-null  int64         
 14  key1             620356 non-null  float64       
 15  key2             620356 non-null  float64       
 16  key3             620356 non-null  float64       
 17  key4             620356 non-null  float64       
 18  key5             620356 non-null  float64       
 19  key6             620356 non-null  float64       
 20  key7             620356 non-null  float64       
 21  key8             620356 non-null  float64       
 22  key9             620356 non-null  float64       
 23  eid_freq         620356 non-null  int64         
 24  eid_mean         620356 non-null  float32       
 25  eid_std          620356 non-null  float32       
 26  common_ts_hour   620356 non-null  int64         
 27  common_ts_day    620356 non-null  int64         
 28  commons_ts_week  620356 non-null  float32       
 29  x1_freq          620356 non-null  int64         
 30  x1_mean          620356 non-null  int64         
 31  x2_freq          620356 non-null  int64         
 32  x2_mean          620356 non-null  int64         
 33  x6_freq          620356 non-null  int64         
 34  x6_mean          620356 non-null  int64         
 35  x7_freq          620356 non-null  int64         
 36  x7_mean          620356 non-null  int64         
 37  x8_freq          620356 non-null  int64         
 38  x8_mean          620356 non-null  int64         
dtypes: datetime64[ns](1), float32(3), float64(9), int64(25), object(1)
memory usage: 177.5+ MB

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值