拉姆齐问题
命题一
任意6个人,其中总有3个人认识或者三个人不认识。
这个问题就等价于完全图,对它的边进行红蓝两个颜色任意着色,其中一定存在一个红色
或者蓝色
(同色三角形)。
证明:
一个顶点与每个其它5个顶点连线,根据鸽巢原理,至少有条边同色,不妨设3条边为红色,2条边为蓝色

假如v2v3,v3v4,v2v4任意一条边为红色,则出现红色,假如全部为蓝色边,则出现蓝色
,即证。
命题二
对完全图进行红蓝两色任意着色,都至少有两个同色三角形(意思为每个三角形的每条边同色,不同三角形不一定同色)。
证明:根据例一已经得出一定有一个同色三角形,不妨令v1v5v6为蓝色三角形,然后进行分类讨论。
(1)假设v1v2,v1v3,v1v4全是红边,则v2v3,v3v4,v2v4任意一条边为红色,就会又出现一个同色三角形,假设都是蓝色,则v2v3v4为蓝色,即出现一个同色三角形。

(2)假设v1v2,v1v3,v1v4其中有一条为蓝色边,不妨设v1v4为蓝色

就会出现以下两种情况:
(i)v4v5,v4v6任意一条为蓝色,就会出现一个蓝色三角形

(ii)v4v5,v4v6均为红边

又分两种情况
第一种情况v4v2,v4v3只要有一条边为红边,则回到了例一的情况

这里一定出现一个同色三角形
第二种情况v4v2,v4v3全为蓝边,也可以回到例一的情况

也一定出现一个同色三角形
所以综上,完全图一定有两个同色三角形。
命题三
一定有一个红色
(蓝色
)或者蓝色
(红色
)
证明:
一个顶点a关联的边数为9条,根据鸽巢原理可知,要么至少6条红边,要么至少4条蓝边。

(1)以a为顶点红色边大于等于6条,不妨先画出6条红色边
首先与a关联的6条红边另一头所关联的6个顶点所构成的(即上面一张图的bcdefg)有一个蓝色
,如图bcd

即证。
否则,根据命题一,与a关联的6条红边的另一头所关联的6个顶点所构成的一定有一个红色
,然后这个
和顶点a以及a的连线构成红色
,如图abcd

即证。
(2)

以a为顶点的蓝色边大于等于4,不妨画出4条蓝边
首先假设与a关联的4条蓝边另一头所关联的4个顶点构成的(即上面一张图的bcde)其中至少有一条蓝边(只要有一条蓝边),则这条蓝边以及它的顶点和a以及a的连线构成蓝色
(如图abc)

否则这个为红色
(如图bcde)

命题四
一定有一个红色
或者蓝色
。
证明:假设每个顶点关联的边都有5条红边,则红边总数不为整数,那么总有一个顶点要么至少6条红边要么至少4条蓝边,我们又回到了命题三的证明,所以得证。
拉姆齐数
对于任意给定的整数,存在最小整数
,使得任意
,
任意进行红蓝两色着色,都存在红色
或者蓝色
。
为拉姆齐数。
可以通过找到刚刚不满足的要求数
,来证明
。
例如证明。
我们已知,我们只需证明
有不满足的情况。如图

所以。
易证:
定理:对任意正整数,有
若和
都是偶数,则严格成立。
证明:令,
中的一个顶点a所关联的边数为
,根据鸽巢原理,
中要么至少存在
条红边,要么至少存在
条蓝边。
(1)假如至少存在条红边,那么与a关联的
条红边另一头所关联的顶点构成的
,要么出现红色
,与顶点a以及
条红边构成
,要么出现蓝色
,所以
。
(2)假设至少存在条蓝边,那么与a关联的
条蓝边另一头所关联的顶点构成的
,要么出现红色
,要么出现蓝色
,与顶点a以及
条蓝边构成
,所以
。
若和
都是偶数,
中,假设所有顶点关联的红边数为奇数,则所有顶点关联的红边数之和不为整数,矛盾,所以一定有一个顶点a关联的红边数为偶数,所以a关联的
条边,要么至少有
条红边,要么至多
条红边(则至少
条蓝边),这时我们就可以通过上面的方法证明
。
拉姆齐数的推广
将红蓝两色推广为任意k种颜色,则,...,
表示的是最小整数使得完全图
存在
颜色的
,或者存在
颜色的
,...,或者存在
颜色的
。
易证:
,...,
,...,
,...,
,...,
+
...,
...
...,
Schur定理
设...,
为集合
...,
的划分,则存在i,使得
有三个数
(不一定不相同),
。其中
...,
,n个3。
证明:假设...,
,并且
,则在
中,将
染为i颜色。则在
中存在同色三角形,设为ab,bc,ac,令
,则
,并且
。
拉姆齐定理
设...,
,且
,则必存在最小正整数
...,
,
...,
,
,使得S中的
个元素中的所有t元子集在第一个盒子中,或者
个元素中的所有t元子集在第二个盒子中,...,或者
个元素中的所有t元子集在第n个盒子中。
t=1时,表示的是广义鸽巢原理,所有元素为鸽子,所有盒子为鸽巢,则N为最小整数使得个元素中的所有t元子集在第一个盒子中,或者
个元素中的所有t元子集在第二个盒子中,...,或者
个元素中的所有t元子集在第n个盒子中。
t=2时,...,
...,
,二元子集表示为边,盒子表示为颜色,则N为最小整数使得
完全图一定出现第一种颜色的
,或者第二种颜色的
,...,或者第n种颜色的
。
易证: