【组合数学】拉姆齐问题以及拉姆齐数(图文详解)

拉姆齐问题

命题一

任意6个人,其中总有3个人认识或者三个人不认识。

这个问题就等价于完全图,对它的边进行红蓝两个颜色任意着色,其中一定存在一个红色或者蓝色(同色三角形)。

证明:

一个顶点与每个其它5个顶点连线,根据鸽巢原理,至少有条边同色,不妨设3条边为红色,2条边为蓝色

假如v2v3,v3v4,v2v4任意一条边为红色,则出现红色,假如全部为蓝色边,则出现蓝色,即证。

命题二

对完全图进行红蓝两色任意着色,都至少有两个同色三角形(意思为每个三角形的每条边同色,不同三角形不一定同色)。

证明:根据例一已经得出一定有一个同色三角形,不妨令v1v5v6为蓝色三角形,然后进行分类讨论。

(1)假设v1v2,v1v3,v1v4全是红边,则v2v3,v3v4,v2v4任意一条边为红色,就会又出现一个同色三角形,假设都是蓝色,则v2v3v4为蓝色,即出现一个同色三角形。

(2)假设v1v2,v1v3,v1v4其中有一条为蓝色边,不妨设v1v4为蓝色

就会出现以下两种情况:

(i)v4v5,v4v6任意一条为蓝色,就会出现一个蓝色三角形

(ii)v4v5,v4v6均为红边

又分两种情况

第一种情况v4v2,v4v3只要有一条边为红边,则回到了例一的情况

这里一定出现一个同色三角形

第二种情况v4v2,v4v3全为蓝边,也可以回到例一的情况

也一定出现一个同色三角形

所以综上,完全图一定有两个同色三角形。

命题三

一定有一个红色(蓝色)或者蓝色(红色

证明:

一个顶点a关联的边数为9条,根据鸽巢原理可知,要么至少6条红边,要么至少4条蓝边。

(1)以a为顶点红色边大于等于6条,不妨先画出6条红色边

首先与a关联的6条红边另一头所关联的6个顶点所构成的(即上面一张图的bcdefg)有一个蓝色,如图bcd

即证。

否则,根据命题一,与a关联的6条红边的另一头所关联的6个顶点所构成的一定有一个红色,然后这个和顶点a以及a的连线构成红色,如图abcd

即证。

(2)

以a为顶点的蓝色边大于等于4,不妨画出4条蓝边

首先假设与a关联的4条蓝边另一头所关联的4个顶点构成的(即上面一张图的bcde)其中至少有一条蓝边(只要有一条蓝边),则这条蓝边以及它的顶点和a以及a的连线构成蓝色(如图abc)

否则这个为红色(如图bcde)

命题四

一定有一个红色或者蓝色

证明:假设每个顶点关联的边都有5条红边,则红边总数不为整数,那么总有一个顶点要么至少6条红边要么至少4条蓝边,我们又回到了命题三的证明,所以得证。

拉姆齐数

对于任意给定的整数,存在最小整数,使得任意,任意进行红蓝两色着色,都存在红色或者蓝色为拉姆齐数。

可以通过找到刚刚不满足的要求数,来证明

例如证明

我们已知,我们只需证明有不满足的情况。如图

所以

易证:

定理:对任意正整数,有

都是偶数,则严格成立。

证明:令中的一个顶点a所关联的边数为,根据鸽巢原理,中要么至少存在条红边,要么至少存在条蓝边。

(1)假如至少存在条红边,那么与a关联的条红边另一头所关联的顶点构成的,要么出现红色,与顶点a以及条红边构成,要么出现蓝色,所以

(2)假设至少存在条蓝边,那么与a关联的条蓝边另一头所关联的顶点构成的,要么出现红色,要么出现蓝色,与顶点a以及条蓝边构成,所以

都是偶数,中,假设所有顶点关联的红边数为奇数,则所有顶点关联的红边数之和不为整数,矛盾,所以一定有一个顶点a关联的红边数为偶数,所以a关联的条边,要么至少有条红边,要么至多条红边(则至少条蓝边),这时我们就可以通过上面的方法证明

拉姆齐数的推广

将红蓝两色推广为任意k种颜色,则,...,表示的是最小整数使得完全图存在颜色的,或者存在颜色的,...,或者存在颜色的

易证:

,...,,...,

,...,,...,+...,......,

Schur定理

...,为集合...,的划分,则存在i,使得有三个数(不一定不相同),。其中...,,n个3。

证明:假设...,,并且,则在中,将染为i颜色。则在中存在同色三角形,设为ab,bc,ac,令,则,并且

拉姆齐定理

...,,且,则必存在最小正整数...,,...,,,使得S中的

个元素中的所有t元子集在第一个盒子中,或者个元素中的所有t元子集在第二个盒子中,...,或者个元素中的所有t元子集在第n个盒子中。

t=1时,表示的是广义鸽巢原理,所有元素为鸽子,所有盒子为鸽巢,则N为最小整数使得个元素中的所有t元子集在第一个盒子中,或者个元素中的所有t元子集在第二个盒子中,...,或者个元素中的所有t元子集在第n个盒子中。

t=2时,...,...,,二元子集表示为边,盒子表示为颜色,则N为最小整数使得完全图一定出现第一种颜色的,或者第二种颜色的,...,或者第n种颜色的

易证:

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
拉姆齐R(m,n)表示满足以下条件的最小整k:对于任意k个人中,要么存在至少m个人互相认识,要么存在至少n个人互相不认识。 要证明R(4,4)=18,我们可以使用反证法。 假设R(4,4)小于18,即R(4,4)<=17。我们构造一个完全图,其中每个顶点代表一个人,边表示两个人之间的关系(认识或不认识)。 首先,我们选择一个顶点v,它与其他17个顶点都有边相连。这是因为如果没有这样的顶点,那么每个顶点最多与其他16个顶点相连,总共只有16*17=272条边,不足以满足R(4,4)<=17的条件。 接下来,考虑与v相连的边。根据鸽巢原理,至少有4个顶点与v直接相连,或者至少有4个顶点与v不相连。我们分两种情况讨论: 情况1:存在4个与v相连的顶点。在这种情况下,我们可以选择其中一个顶点u,并考虑与u相连的边。根据鸽巢原理,至少有3个顶点与u直接相连,或者至少有3个顶点与u不相连。如果有3个与u相连的顶点,则这4个顶点组成了一个大小为4的完全图,满足R(4,4)<=17的条件。如果有3个与u不相连的顶点,则这3个顶点和v组成了一个大小为4的完全图,同样满足R(4,4)<=17的条件。 情况2:存在4个与v不相连的顶点。在这种情况下,我们可以选择其中一个顶点u,并考虑与u相连的边。根据鸽巢原理,至少有3个顶点与u直接相连,或者至少有3个顶点与u不相连。如果有3个与u相连的顶点,则这3个顶点和v组成了一个大小为4的完全图,满足R(4,4)<=17的条件。如果有3个与u不相连的顶点,则这3个顶点组成了一个大小为3的完全图,再加上v,总共有4个顶点,同样满足R(4,4)<=17的条件。 综上所述,无论是情况1还是情况2,我们都可以找到一个大小为4的完全图,满足R(4,4)<=17的条件。这与假设矛盾,因此R(4,4)>17。 根据拉姆齐的定义,R(4,4)表示满足条件的最小整,因此R(4,4)=18。 所以,用C++写代码证明R(4,4)=18的思路大致如上所示,可以根据这个思路编写代码进行验证。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值