假设中的等价问题
设有两个总体,它们的概率密度分别为,有,有如下假设
设两个总体均值存在,分别为,则以上假设就等价于以下假设
秩的定义
设一总体X,有容量为n的样本,从小到大排列为,...,,的下标就是它的秩。
例如12<33<34<45其中33的秩就是2
如果有相等的数,它们的秩就为它们的下标的平均值
例如12<33=33<34其中33的秩就为
秩和的定义
两个容量分别为的样本,将他们综合起来排序,则第一个样本的秩和就为它所有的观察值的秩之和,记作,第二个样本同理。
所以
秩和检验法
秩和检验法是检验两个分布函数是否相同的检验法,不需要求出分布函数的参数,只需要计算样本秩。
双边检验
我们要检验两个样本是否是同一分布,假设为真,那么和的必须相近,也就是说,不能太大也不能太小,样本一的数应该分散的排列在总的序列中。考虑两种极端情况,样本一的观察值全部分布在序列最前或者最后,则。
我们给出一个显著性水平,则拒绝域为或,其中是满足的最大整数,是满足的最小整数。
犯第一类错误的概率为。
求临界值的方法
以为例,显著性水平。
样本一的观察值的秩和有可能,全部列出来
三个观察值的秩 | 三个观察值的秩 | 三个观察值的秩 | 三个观察值的秩 | 三个观察值的秩 | |||||
123 | 6 | 136 | 10 | 167 | 14 | 247 | 13 | 356 | 14 |
124 | 7 | 137 | 11 | 234 | 9 | 256 | 13 | 357 | 15 |
125 | 8 | 145 | 10 | 235 | 10 | 257 | 14 | 367 | 16 |
126 | 9 | 146 | 11 | 236 | 11 | 267 | 15 | 456 | 15 |
127 | 10 | 147 | 12 | 237 | 12 | 345 | 12 | 457 | 16 |
134 | 8 | 156 | 12 | 245 | 11 | 346 | 13 | 467 | 17 |
135 | 9 | 157 | 13 | 246 | 12 | 347 | 14 | 567 | 18 |
所以,=17
单边检验
其拒绝域为,其中满足。
其拒绝域为,其中满足。
特殊情况
可以证明当为真时
而当时,近似的
作为统计量在显著性水平为下双边检验,左边检验,右边检验的拒绝域为