数据预处理的一般步骤

引言

        在当今的深度学习、人工智能和数据挖掘领域,数据是驱动模型和算法的关键因素。然而,原始数据往往存在各种问题,如噪声、缺失值、数据冗余过大、特征过多等,这些问题会严重影响模型的性能和准确性。数据预处理作为数据科学和机器学习中的关键步骤,旨在准备和清理原始数据,使其适合进行分析和建模。在 Python 科学计算中有许多强大的库和工具可以用于数据预处理,例如Scikit-Learn、numpy、pandas等,为深度学习、人工智能和数据挖掘提供了有力的支持。

数据预处理的实际意义

        数据预处理在数据分析和机器学习中具有重要意义。首先,它能提高模型的性能,通过清洗数据和进行特征工程来提升模型的准确性和可靠性。其次,数据预处理可以节省时间和资源,减少数据集规模,优化训练时间,特别是在大数据环境下尤为关键。此外,它增强了数据的可用性,通过格式化、转换和整合不同来源的数据,使其适合分析和建模。预处理还提高了模型的泛化能力,降低过拟合风险,并支持决策过程,使数据更直观易懂。最后,数据预处理有助于满足模型的要求,确保数据符合算法的假设,同时也有助于遵循法律法规,保护隐私。总之,数据预处理是确保数据科学项目成功的基础。

数据预处理的方法和实现

       数据预处理是提升模型性能的重要步骤。本文将介绍一些常用方法包括缺失值处理,通过填充或删除缺失数据来应对数据不完整的情况;数据标准化,常将特征缩放至均值为0、方差为1的分布,以适应许多机器学习算法;数据归一化,将数据缩放至特定范围(如[0,1]),适合神经网络等对数值敏感的算法;编码分类变量,使用独热编码或标签编码将分类数据转为数值形式;异常值处理,识别并处理极端值以提升数据质量。这些方法能显著提高模型的准确性和鲁棒性

一)去除噪声函数

       在去除噪声的操作中我们最常用的是scipy库中的scipy.ndimage子模块,在这个模块中提供了多种滤波器用于去除噪声。例如均值滤波器中值滤波器高斯滤波器。在使用时需使用以下命令导入对应方法函数。from scipy.ndimage import uniform_filter median_filter gaussian_filter

1.均值滤波器(uniform_filter)

       功能:对数据进行均值滤波处理,去除高频噪声通过计算邻域内像素的平均值来平滑图像,减少噪声的影响。

      调用及参数:

   # 使用均值滤波器去除噪声

   filtered_data = uniform_filter(data, size)  

   data:输入数据,可以是一维数组、二维数组或多维数组。

   size:滤波器的大小,可以是一个整数或一个整数元组。如果是一个整数,则表示滤波器的边长为 size;如果是一个整数元组,则表示滤波器的形状为 size。

2.中值滤波器(median_filter)

      功能:对数据进行中值滤波处理,去除高频噪声它将邻域内像素的值排序,取中值作为中心像素的新值。

     调用及参数:

  # 使用滤波器去除噪声

  filtered_data = median_filter(data, size)

  data:输入数据,可以是一维数组、二维数组或多维数组。

  size:滤波器的大小,可以是一个整数或一个整数元组。如果是一个整数,则表示滤波器的边长为 size;如果是一个整数元组,则表示滤波器的形状为 size。

3.高斯滤波器(gaussian_filter)

       功能:能够平滑图像并去除噪声,同时保留图像的边缘和细节。通过调整标准差参数,可以控制滤波的强度。

      调用及参数:

  # 使用高斯滤波器去除噪声

  filtered_image = gaussian_filter(data, sigma)

  data:输入数据,可以是一维数组、二维数组或多维数组。

  sigma:高斯滤波器的标准差,可以是一个浮点数或一个浮点数元组。如果是一个浮点数,则表示高斯滤波器在各个方向上的标准差相同;如果是一个浮点数元组,则表示高斯滤波器在各个方向上的标准差不同。

实用算例:

      以下是使用均值滤波器去除噪声的完整示例代码及其输出结果。

代码:

import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import uniform_filter

# 生成一个均匀的灰色图像
image_size = (256, 256)
original_image = np.ones(image_size) * 0.5 
# 添加高斯噪声
noise = np.random.normal(0, 0.1, image_size) 
noisy_image = original_image + noise
noisy_image = np.clip(noisy_image, 0, 1) 
# 应用均值滤波器
filtered_image = uniform_filter(noisy_image, size=5) 
# 绘制图像
plt.figure(figsize=(12, 4))
# 原始图像
plt.subplot(1, 3, 1)
plt.imshow(original_image, cmap='gray', vmin=0, vmax=1)
plt.title('Original Image')
plt.axis('off')
# 带噪声的图像
plt.subplot(1, 3, 2)
plt.imshow(noisy_image, cmap='gray', vmin=0, vmax=1)
plt.title('Noisy Image')
plt.axis('off')
# 滤波后的图像
plt.subplot(1, 3, 3)
plt.imshow(filtered_image, cmap='gray', vmin=0, vmax=1)
plt.title('Filtered Image')
plt.axis('off')
# 显示图像
plt.tight_layout()
plt.show()

结果:

(二)缺失值处理函数

       处理缺失值时往往使用Pandas库中fillna() 函数。它可以用来替换DataFrame或Series中的缺失值(NaN)为特定的值、前一个值、后一个值等。以下是 fillna() 函数的参数说明、相关功能及其使用示例。

     调用及参数:

  # 调用函数处理缺失值

  DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None,           downcast=None)

  value:类型:标量、字典、序列、DataFrame。用来填充缺失值的值。如果是字典,可以根据列名指定不同的填充值。  

  method: 类型:字符串,默认为 None。 填充方法,可以是 'ffill'(向前填充)或 'bfill'(向后填充)。      

   axis: 类型:整数或字符串,默认为 None。 填充的方向,0 表示按行填充,1 表示按列填充。可以使用 'index' 和 'columns' 代替。   

   inplace:类型:布尔值,默认为 False。 如果为 True,将直接在原数据上进行填充,不会返回新的对象。   

   limit:类型:整数,默认为 None。 限制填充的最大数量。可以用来限制填充的范围。  

   downcast:类型:字典或字符串,默认为 None。可以指定数据类型的转换用于控制返回值的类型。

实用算例:

     以下是一些使用 fillna() 函数的示例代码,展示如何处理 DataFrame 中的缺失值。

代码:

import pandas as pd
import numpy as np

# 创建一个包含缺失值的 DataFrame
data = {
    'A': [1, 2, np.nan, 4],
    'B': [np.nan, 2, 3, 4],
    'C': [1, np.nan, np.nan, 4]
}
df = pd.DataFrame(data)

# 使用常数填充缺失值
df_filled = df.fillna(value=0)

# 使用向前填充方法填充缺失值
df_ffill = df.fillna(method='ffill')

# 打印结果
print("原始数据:")
print(df)
print("\n使用常数填充缺失值:")
print(df_filled)
print("\n使用向前填充填充缺失值:")
print(df_ffill)

结果:

(三)归一化及标准化函数

       在数据处理和预处理阶段,标准化、归一化和编码是常用的步骤。数据标准化是将特征的均值调整为0,标准差调整为1的过程。通常可以使用sklearn库中的StandardScaler进行标准化。数据归一化通常是将特征缩放到0和1之间,可以使用sklearn库中的MinMaxScaler进行归一化处理。数据编码通常用于将类别变量转换为数值格式,sklearn库中的OneHotEncoder和LabelEncoder是常用的编码方法。

1.标准化(StandardScaler)

        功能:将特征的均值调整为0,标准差调整为1。适合于有正态分布或者近似正态分布的数据。

       调用及参数:

     # 创建 StandardScaler 实例

     scaler = StandardScaler(*, copy=True, with_mean=True,with_std=True)

     # 标准化数据

     standardized_data = scaler.fit_transform(data)

     copy (bool, default=True): 指示是否在进行转换时复制数据。如果为 True,则会复制输入数据;如果为 False,则会在原地进行操作,可能会修改输入数据。 注意: 设为 False 时,输入数据会被修改,谨慎使用。   

     with_mean (bool, default=True):指示是否在标准化过程中减去特征的均值。如果为 True,则会减去均值,使每个特征的均值为 0。 如果输入数据的特征中有 NaN 值,则不建议设置为 True,因为计算均值时会引发问题。   

    with_std (bool, default=True):指示是否在标准化过程中除以特征的标准差。如果为 True,则会将每个特征的标准差调整为 1。如果输入数据的标准差为 0(即特征的值全部相同),则会引发除零错误。

实用算例:

      以下是使用 StandardScaler 的简单示例。

代码:

import pandas as pd
from sklearn.preprocessing import StandardScaler

# 创建示例 DataFrame
df = pd.DataFrame({
    'A': [1, 2, 3, 4, 5],
    'B': [5, 6, 7, 8, 9]
})

# 创建 StandardScaler 实例
scaler = StandardScaler()

# 标准化数据
standardized_data = scaler.fit_transform(df)

# 打印标准化前后的数据
print(df)
print(standardized_data)

结果:

2.归一化

        功能:将特征缩放到一个特定的范围(通常是 [0, 1] 或 [-1, 1]),以消除特征之间的尺度差异,从而提高模型的训练效率和准确性。使用MinMaxScaler,适合于没有特定分布的数据。 

       调用及参数:

    # 创建 MinMaxScaler 实例

    scaler = MinMaxScaler(feature_range,copy)

    # 进行归一化

    normalized_data = scaler.fit_transform(data)

   feature_range: tuple (min, max),默认值为 (0, 1) ,指定缩放后的最小值和最大值。可以自定义范围,例如 (1, 2) 将数据缩放到 [1, 2] 之间。   

   copy: bool,默认值为 True ,指定是否创建数据的副本。如果设置为 False,那么将对原始数据进行修改,这可能会节省内存。

实用算例:

        下面是一个使用 MinMaxScaler 的示例代码。

代码:

from sklearn.preprocessing import MinMaxScaler
import numpy as np

# 创建数据
data = np.array([[1, 2], [2, 3], [4, 5], [8, 10]])

# 创建 MinMaxScaler 对象
scaler = MinMaxScaler(feature_range=(0, 1))

# 拟合并转换数据
scaled_data = scaler.fit_transform(data)

print("缩放前后的数据:")
print(data)
print(scaled_data)

结果:

3.编码

        功能:在数据处理中,编码(Encoding)是将分类变量转换为数值形式的过程,以便机器学习模型能够处理。其中最常用的是标签编码和独热编码。使用LabelEncoder和OneHotEncoder,适合于类别数据。

 (1)标签编码

        将每个类别映射为唯一的整数。适用于有序分类变量(如:评级从低到高)。使用sklearn库中的LabelEncoder。

     调用及参数:

      # 创建 LabelEncoder 实例

      label_encoder = LabelEncoder()

      # 拟合并转换数据

      encoded_data = label_encoder.fit_transform(data)

      fit(X): 拟合标签编码器以识别类别。

      transform(X): 将标签转换为整数。

      fit_transform(X): 执行 fit 和 transform 的组合操作。

      inverse_transform(y): 将编码转换回原始标签。

实用算例:

       下面是一个使用LabelEncoder的示例代码。

代码:

from sklearn.preprocessing import LabelEncoder

# 示例数据
data = ['cat', 'dog', 'cat', 'bird']

# 创建 LabelEncoder 实例
label_encoder = LabelEncoder()

# 拟合并转换数据
encoded_data = label_encoder.fit_transform(data)
print(data)
print(encoded_data) 

结果:

(2).独热编码

       将每个类别转换为二进制向量,适用于无序分类变量(如:颜色、城市名等)。使用pandas库里的get_dummies方法。

       调用及参数:

        # 使用 pandas 的 get_dummies 方法进行独热编码

        encoded_data = pd.get_dummies(data, columns,drop_first)

        data: 输入的 DataFrame。

        columns: 需要进行独热编码的列。

        drop_first: 类型为bool, 默认False,如果为 True将删除第一个类别以避免虚拟变量陷阱。

实用算例:

        下面是一个使用独热编码的示例代码。

代码:

import pandas as pd

# 示例数据
data = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue']
})

# 使用 pandas 的 get_dummies 方法进行独热编码
encoded_data = pd.get_dummies(data, columns=['color'])
print(data)
print(encoded_data)

结果:

(四)特征选择

1.相关性分析

          功能:使用pandas库中的皮尔逊相关系数、斯皮尔曼相关系数。通过相关性分析选择与目标变量相关性强的特征,相关系数是衡量两个变量之间的线性关系强度。取值范围在 -1 到 1 之间,接近 1 表示强正相关,接近 -1 表示强负相关,接近 0 表示无线性相关。使用模型(如随机森林、Lasso回归)评估特征的重要性,选择重要特征。

        调用及参数:

        corr = df.corr(method, min_periods)

        method:相关性分析方法,可以是 pearson、spearman

        min_periods:计算相关性系数所需的最小样本数。如果数据中的样本数小于 min_periods,则返回 NaN。默认是 1。

       特征选择标准:设定一个相关性阈值,例如 0.7。对于相关性系数超过这个阈值的特征对,可以考虑去除其中一个特征。如果feature1feature2和feature3的相关性都很高,而 feature2feature3之间的相关性较低,可以考虑保留feature2feature3,去除feature1

实用算例:

        下面是一个使用相关性的分析的示例代码。

代码:

import pandas as pd
import numpy as np

np.random.seed(42)
data = {'feature1': np.random.randn(100),
        'feature2': np.random.randn(100),
        'feature3': np.random.randn(100)}
df = pd.DataFrame(data)

# 使用皮尔逊方法,最小样本数为 40
pearson_corr = df.corr(method='pearson', min_periods=40)
print(pearson_corr)

结果:

         选择特征值:设相关性阈值为0.15,则由相关性矩阵可以看出特征1和特征3的相关性为0.19大于相关性阈值所以可以选择特征1和特征3作为模型特征。

2.特征重要性评估

使用随机森林评估特征

        功能: 随机森林可以通过评估每个特征对模型预测的重要性来进行特征选择。它衡量特征在构建决策树过程中的贡献程度,从而确定哪些特征对预测目标变量最为关键。使用Scikit-learn 库中的RandomForestClassifier

        调用及参数:

         #分类任务示例#

         rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

        #回归任务示例 

        rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

        rf_model.fit(X_train, y_train)          

        importances = rf_model.feature_importances_train

        n_estimators:随机森林中决策树的数量。增加决策树数量通常可以提高模型的稳定性和准确性,但也会增加计算时间。

         criterion:用于衡量分裂质量的标准,对于分类问题可以是 “gini”(基尼不纯度)或 “entropy”(信息熵),对于回归问题通常是 “mse”(均方误差)。

         max_depth:决策树的最大深度,限制深度可以防止过拟合。

         min_samples_split:分裂内部节点所需的最小样本数。

        min_samples_leaf:叶节点所需的最小样本数。

        random_state:随机数种子,用于可重复的结果。

        特征选择标准:importances是一个数组,其中每个元素表示每个对应特征的重要性得分。得分越高,说明该特征对模型的预测越重要。设置一个重要性阈值,大于阈值的特征保留下来作为重要特征。

实用算例:

       下面是一个使用随机森林评估特征的示例代码。

代码:

import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

# 加载数据集
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train, y_train)

# 获取特征重要性
importances = rf_classifier.feature_importances_
print(importances)

# 选择重要特征
threshold = 0.05
selected_features = X.columns[importances > threshold]
print(data.feature_names)
print(selected_features)

# 使用选择的特征进行训练和评估
X_train_selected = X_train[selected_features]
X_test_selected = X_test[selected_features]

rf_classifier_selected = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier_selected.fit(X_train_selected, y_train)
accuracy = rf_classifier_selected.score(X_test_selected, y_test)
print(f"使用随机森林选择特征后的准确率:{accuracy}")

结果:

           选择特征值:从结果中发现在众多的特征中选择了8个最重要的特征,使用这些特征参与模型训练得到95.6%的高准确率。

.使用Lasso 回归评估特征

       功能:Lasso 回归通过在损失函数中加入 L1 正则项,使得一些不重要的特征的系数被压缩为零,从而实现特征选择。它可以自动筛选出对目标变量有显著影响的特征,同时降低模型的复杂度。使用Scikit-learn 库中的Lasso

     调用及参数:

      # 训练 Lasso 回归模型

      lasso_model = Lasso(alpha=0.1)

      lasso_model.fit(X_train, y_train)

      alpha:正则化强度。较大的 alpha 值会导致更多的特征系数被压缩为零。需要通过交叉验证等方法来选择合适的 alpha 值。

     max_iter:最大迭代次数。

     tol:优化算法的收敛阈值。

     特征选择标准:可以查看模型的系数(lasso_model.coef_)。系数不为零的特征被认为是重要的特征,而系数为零的特征可以被视为不重要的特征,可以考虑从模型中剔除。

实用算例:

        下面是一个使用加入 L1 正则项的Lasso 回归评估特征的示例代码。

代码:

import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split

# 加载数据集
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练 Lasso 回归模型
lasso_model = Lasso(alpha=0.1)
lasso_model.fit(X_train, y_train)

# 获取非零系数的特征
selected_features = X.columns[lasso_model.coef_!= 0]
print(lasso_model.coef_)
print(data.feature_names)
print(selected_features)

# 使用选择的特征进行训练和评估
X_train_selected = X_train[selected_features]
X_test_selected = X_test[selected_features]

from sklearn.linear_model import LogisticRegression
logistic_model = LogisticRegression()
logistic_model.fit(X_train_selected, y_train)
accuracy = logistic_model.score(X_test_selected, y_test)
print(f"使用 Lasso 回归选择特征后的准确率:{accuracy}")

结果:

         选择特征值:从结果中可以看到lasso_model.coef_数组中有5个大于0的元素,说明这5个是重要特征,接下来我们使用这5个特征训练模型发现准确率可以达到96.5%,说明我们特征选择已经包含了几乎全部的信息。

3.降维特征提取

         功能:应用降维技术(如主成分分析 PCA、线性判别分析 LDA)减少特征数量,同时保留信息。

①.PCA降维

           功能:PCA 是一种无监督的特征提取方法,通过线性变换将原始数据投影到低维空间,使得投影后的数据方差最大。它可以有效地降低数据的维度,同时保留数据的主要特征,去除噪声和冗余信息。使用Scikit-learn 库中的PCA。

          使用条件:适用于高维数据,尤其是当特征数量远大于样本数量时。数据应该是数值型的,并且各个特征之间具有一定的相关性。

         调用及参数:

         # 训练PCA模型

         pca = PCA(n_components=2)

         X_pca = pca.fit_transform(data)

         n_components:要保留的主成分数量。可以是整数,表示具体的维度数;也可以是一个浮点数在 0 到 1 之间,表示保留的方差比例。

         whiten:是否对数据进行白化处理。白化可以使数据具有相同的方差,有助于提高后续算法的性能。默认是 False。

         random_state:随机数种子,用于可重复的结果。

          特征选择标准:X_pca是经过 PCA 变换后的低维数据。每个样本在新的低维空间中表示为一个向量。可以通过查看解释方差比(pca.explained_variance_ratio_)来了解每个主成分解释原始数据方差的比例。这个比例可以帮助确定保留多少个主成分能够在降低维度的同时保持足够的信息。

实用算例:

         下面是一个使用PCA评估特征的示例代码。

代码:

import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

# 加载数据集
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 执行 PCA
pca = PCA(n_components=0.95)  # 保留 95%的解释方差比例
X_pca = pca.fit_transform(X_scaled)

# 分析主成分的系数矩阵
component_matrix = pd.DataFrame(pca.components_, columns=X.columns)
print(component_matrix)

# 选择在重要主成分中有较大权重的特征
important_features = []
for i in range(component_matrix.shape[0]):
    component = component_matrix.iloc[i]
    important_features.extend(component.abs().nlargest(5).index)

important_features = list(set(important_features))

print(data.feature_names)
print("重要特征:", important_features)

结果:

②.LDA降维

          函数功能:LDA 是一种有监督的特征提取方法,它寻找一个线性投影,使得不同类别之间的距离尽可能大,同一类别内的距离尽可能小。LDA 的目标是提高数据的可分性,从而有利于分类任务。使用Scikit-learn 库中的LinearDiscriminantAnalysis。

         使用条件:适用于有类别标签的数据集。数据应该是数值型的,并且不同类别之间有一定的区分度

         调用及参数:

         # 训练LDA模型

         lda = LinearDiscriminantAnalysis(n_components=2)

         X_lda = lda.fit_transform(X, y)

        n_components保留解释方差比例,通常为小数表示用于衡量主成分对原始数据方差的解释程度。

       solver:用于计算 LDA 的求解器。可以是 'eigen' 或'svd'。'eigen' 使用特征值分解求解,'svd' 使用奇异值分解求解。默认是 'eigen'。

       shrinkage:是否应用收缩估计以提高泛化能力。可以是 None、'auto' 或浮点数。默认是 None。

       priors:各分类的先验概率。如果不指定,则从数据中估计。

       特征选择标准:根据特征权重 lda.coef_[0],选择那些权重较大的特征作为重要特征。可以设定一个阈值,选择权重超过该阈值的特征。

实用算例:

       下面是一个使用LDA评估特征的示例代码。

代码:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 加载数据集
data = load_iris()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 执行LDA
lda = LinearDiscriminantAnalysis()
X_train_lda = lda.fit_transform(X_train, y_train)

# 获取特征重要性
feature_importances = np.abs(lda.coef_[0])
print(feature_importances)

# 选择重要特征
num_top_features = 2
top_feature_indices = np.argsort(feature_importances)[-num_top_features:]
top_features = X.columns[top_feature_indices]
print(data.feature_names)
print("重要特征:", top_features)

# 使用选择的特征进行后续操作
X_train_selected = X_train[top_features]
X_test_selected = X_test[top_features]

# 使用选择的特征训练模型
model = LogisticRegression()
model.fit(X_train_selected, y_train)

# 在测试集上评估模型
y_pred = model.predict(X_test_selected)
accuracy = accuracy_score(y_test, y_pred)
print("使用选择特征训练模型后的准确率:", accuracy)

结果:

总结

         数据预处理在 Python 科学计算中具有重要的实际意义,尤其是在深度学习、人工智能和数据分析领域。通过去除噪声、处理缺失值、归一化、标准化、相关性分析和特征值提取等数据预处理步骤,可以提高数据的质量和模型的性能,节省计算资源和时间。在实际应用中,我们可以根据具体的问题和数据特点选择合适的数据预处理方法和函数,并结合可视化工具和评估指标来验证数据预处理的效果。同时,不断探索和创新数据预处理方法,以适应不断发展的深度学习、人工智能和数据分析技术的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值