“ 数据预处理是一项复杂且重要的过程,是神经网络的核心工作之一。”
在神经网络技术中,有几个比较重要的环节,其中就有神经网络模型的设计;但在此之前还有一个很重要的功能就是数据集的整理;一个高质量的数据集高性能神经网络模型的基础。
但怎么才能打造一个合格的数据集,以及怎么打造一个合格的数据集?而这就是神经网络模型的数据处理部分。
数据预处理
不论是在传统的数据分析领域,亦或者在神经网络模型领域;数据处理都是其中必不可少,且相当重要的一环;但怎么进行数据处理,以及数据处理需要哪些步骤,以及每个步骤的作用是什么?这个可能很多人就不是很清楚了。
数据预处理的意义
在神经网络模型训练过程中,数据集的质量直接影响到模型的性能表现;而我们在收集训练数据的过程中,难免会面临着以下几个问题:
-
原始数据存在异常值或缺失问题
-
模型无法直接处理原始数据格式
-
数据量或维度过大以及数据冗余问题
举例说明以上几个问题,首先最常见的异常值与缺失问题;比如在个人信息统计过程中,有人的年龄填了200岁;或者家庭地址没填等就属于异常值和缺失问题;因为目前来说,人不可能活到200岁,而如果是快递这种需要邮寄地址的情况,地址缺失就是不肯接受的问题。
而模型无法处理原始数据格式,比如说计算机无法直接处理文字,图片;只能把文字,图片转换成数字进行处理;亦或者时间格式可能需要转换成时间戳。
最后数据冗余问题,比如说对一个班级的学生信息进行统计;可能存在部分学生被重复统计的情况;还有一种数据冗余是可以通过其它值进行计算;如有了商品的总价和数量就可以计算均价;但在很多数据处理中,均价可能会直接计算处理,如交易报表;但在神经网络训练过程中,可能就不需要均价这个字段。
而这就是绝大部分数据所存在的问题,这也就直接导致原始数据无法直接拿来使用;必须经过一定的处理才能满足神经网络的训练需求。
因此,数据预处理需要经过哪些步骤呢?对数据预处理来说,主要需要经过以下几个步骤:
-
数据清洗
-
数据转换
-
数据压缩
数据清洗就是需要清洗掉原始数据中存在的一些异常值,空值等;比较常见的清洗对象主要有以下几个特征:
-
数据重复
-
数据杂乱
-
数据不完整
-
数据格式不一致
-
数据偏斜
-
数据冗余
因此,数据处理的第一步一般都是数据清洗;把一些非法数据进行删除或整理。
数据清洗是数据处理的第一步,但其也有多种不同的方式;如,对非法数据直接删除;如删除数据中的重复,空值,不完整数据等;其次,也可以对数据进行填充处理,如对于不完整的数据可以使用平均值或者固定值进行填充。
举例来说,你统计一个学校的学生数据;而很多学生的信息填写并不完整,存在大量的缺失值。这时直接删除缺失数据就不太合适了,因为删除之后可能这次统计就没有意义了。因此,这时就可以对一些不重要的数据进行填充,比如你需要统计的是学生的年龄分布,这时学生的地址就可以使用固定值进行填充。
而不论是数据清洗,还是数据转换都要根据不同的需求场景,选择合适的处理方式,而不是全部进行统一处理。
而数据转换可能涉及到数据的格式转换,以及形态的变换;如上图所示,年龄和收入应该都统一采用数值类型,而不应该出现字符串的形式;而入职日期的格式也不完全相同;这种就需要把数据格式转换成统一的类型。
而针对文本数据或图像数据,也需要特定的格式变换;如文本数据需要采用数据编码技术或者文本向量化的方式,把文本数据转换成模型能够识别的向量数据。
对于图像数据也是如此,由于图像的来源不同,因此图像数据一般需要调整大小和通道数,像素归一化处理等;比如MINST手写数字的数据集就是统一的28*28固定大小的手写数字图片。
在神经网络技术的学习过程中,很多人都只重视神经网络模型本身,而忽略了数据的预处理过程。数据预处理是一项复杂并且繁重的工作,数据的质量间接决定了模型的性能。
而且,很多模型厂商头疼的一件事就是,从哪里去找到足够且合适的训练数据。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。