关于使用ICA,可以采用mne的库来进行实现。具体可以查看官网:ICA使用
ICA的大致原理是:找到一个分解的矩阵,将原始数据分解成时间独立和空间固定的分量之和。然后先根据自己的经验去除伪迹分量,再通过将无伪影的ICA成分的总和投影回头皮。获得了无伪影事件相关的大脑信号。
今天我是想要记录如何将一个原始脑电信号【n_channel,times】进行ICA处理:
batch_channel = ['Fp1', 'Fp2', 'Fz', 'F3', 'F4', 'F7', 'F8', 'FC1', 'FC2', 'FC5', 'FC6', 'Cz', 'C3', 'C4', 'T7', 'T8', 'CP1', 'CP2', 'CP5', 'CP6', 'Pz', 'P3', 'P4', 'P7', 'P8', 'PO3', 'PO4', 'Oz', 'O1', 'O2', 'A2', 'A1']
types = ['eeg']*32
def butter_bandpass(low_cut, high_cut, fs, order=4):
"""
:param low_cut: low frequency
:param high_cut: high frequency
:param fs: sampling rate of the signal
:param order: order of the filter
:return: numerator (b) and denominator (a) polynomials of the IIR filter
"""
nyq = 0.5 * fs
low = low_cut / nyq
high = high_cu

本文介绍如何利用Python中的mne库实施独立成分分析(ICA)以去除伪影。ICA通过寻找时间独立和空间固定的信号分量,帮助识别并移除脑电(EEG)信号中的噪声。首先,从原始脑电信号[n_channel, times]开始,经过ICA处理,去除已识别的伪迹分量,最终得到无伪影的大脑活动信号。"
111668726,7888729,Python Numpy中的爱因斯坦求和约定,"['Python', 'Numpy', '矩阵运算', '向量运算', '科学计算']
最低0.47元/天 解锁文章
35

被折叠的 条评论
为什么被折叠?



