【算法小结】大整数快速幂

“ Ctrl AC!一起 AC!”

前置文章:【算法小结】快速幂

基于普通版快速幂,大整数快速幂的数值范围要大于long long 类型,所以我们在处理指数时,要分段处理:

例如:

将指数123分解成3+10*2+100*1,所以关键点就是不断以十次幂扩大底数

然后对右式分析:

其中a^3,a^10,(a^10) ^2,....都可以通过普通版的快速幂实现

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL quick_mod(LL a,LL b,LL mod){ //基础版快速幂(备用) 
	LL ans=1;
	while(b){
		if(b&1){
			ans=(ans*a)%mod;
			b--;
		}
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}
LL quickmod_big(LL a,char *b,int len,LL mod){ //大整数快速幂(需引用基础快速幂) 
	LL ans=1;
	while(len>0){ //从指数b的个位开始遍历 
		if(b[len-1]!='0'){  //如果是零的话就跳过,例:a^20 = a^0 * (a^10)^2 零次幂是1,直接跳到下面扩大底数就行 
			int s=b[len-1]-'0';
			ans=ans*quick_mod(a,s,mod)%mod; //这里就是在原ans基础上累乘一个对a^s的快速幂(a是会一直变的,见下) 
		}
		a=quick_mod(a,10,mod)%mod; //底数扩大十次幂 
		len--;
	}
	return ans;
} 
int main(){
	char s[10000];
	LL a,mod;
	cin>>a>>s>>mod;
	int len=strlen(s);
	cout<<quickmod_big(a,s,len,mod); //(a^s)%mod,传入len的目的是遍历指数字符串 
} 

感谢阅读!!!

“ Ctrl AC!一起 AC!”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ctrl AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值