类型:流程控制
描述
自然常数e可以用级数1+1/1!+1/2!+⋯+1/n!来近似计算。
本题要求用该公式计算e的近似值,若最后一项(1/n!)小于给定的阀值时,终止计算(该项不计入)。
输入格式
输入一个小于 1 的浮点数做为阈值
输出格式
输出满足阈值条件的近似 e,输出保留小数点后 8 位。
示例
输入:0.00000001
输出:2.71828183
参考代码
# 自然常数e可以用级数1+1/1!+1/2!+⋯+1/n!来近似计算。
# 本题要求用该公式计算e的近似值,直至公式里最后一项(1/n!)小于给定的阀值为止(小于给定阀值的第一项也要计入)。
# 输入格式:
# 输入一个小于1的浮点数做为阀值
# 输出格式:
# 输出满足阈值条件的近似e,输出保留小数点后八位。
# 分析:从第2项开始,每项的分母为自然数的阶乘,可用math.factorial(i)或math.prod(range(1, i + 1))获得,也可以用累乘的方法获得
import math
threshold = float(input()) # 输入一个小于1的浮点数做为阀值
e = 1 # 取第一项作为e的初值
i = 1 # 分母序列的初值
while True: # 构建无限循环
if 1 / math.factorial(i) < threshold: # 设定终止条件,最后一项(1/n!)小于给定的阀值时
break # 提前终止循环
else: # 最后一项(1/n!)大于或等于给定的阀值时
e = e + 1 / math.factorial(i) # 将当前 i 的阶乘分之一累加到e上,得到新的e值
i = i + 1 # 分母序列下一个数
print("{:.8f}".format(e)) # 按要求格式输出,保留8位小数