大数据项目
随着社会的进步,大数据的高需求,高薪资,高待遇,促使很多人都来学习和转行到大数据这个行业。学习大数据是为了什么?成为一名大数据高级工程师。而大数据工程师能得到高薪、高待遇的能力在哪?自然是项目经验。下面给大家大概介绍一下在阿里的"双11"、“双12”、"双旦"即将到来的"618"与腾讯大数据都用上的十二个大数据项目:
一个大数据分析项目关键构成如下:
信息采集组、数据清洗组、数据融合组、数据挖掘组、数据可视化组。
根据每组的名称很好理解。
信息采集组主要是通过网络爬虫来采集数据,当然还可以根据业务需求,通过不同的方式来采集数据;
数据清洗组主要就是把一些无效的脏数据找出来剔除或者替换,任务量其实很大,因为爬来的数据脏数据量很大,这个组的工作周期一般很长,任务也很重;
数据融合组主要就是把爬来的课程信息把相似的归类,有上下级关系的就按照子类父类的关系列好,这一组的工作非常不好完成,目前我们做的融合效果不算好,想融合好算是一个难点。
数据挖掘组就是拿到可用的数据之后通过数据挖掘算法,去研究之前设定好的影响因子之间的因果关系,主要的分类算法有决策树、贝叶斯分类、基于规则的分类、神经网络、持向量机、懒惰学习算法中的K-最近邻分类和基于案例的推理等算法;
数据可视化组顾名思义就是把数据挖掘组的成果可视化展示,这样可以直观的看到数据之间的关系,并利用数据分析和开发工具发现其中未知信息的处理过程
了解大数据的项目构成,那么怎么成功的做成一个项目呢?该怎么去做呢?
成功项目的标志
成功很多时候跟失败是反过来的&