- 博客(14)
- 收藏
- 关注
原创 项目实训日志(十三)—面试问答系统UI制作(3)
然后再是发送框,要使发送框不遮挡发送内容,设置z-index值。这一篇主要是对面试问答系统UI界面的优化。然后是对按钮布局的设置。
2024-06-24 12:20:55 184
原创 项目实训日志(十二)-面试问答系统UI制作(2)
设置responseMessage变量作为将前端输入传给后端进行数据处理。设置各问题选择的按钮不可见,这样就不有前后组件顺序的问题。设置response变量用于将后端传入的信息传回前端。先设置显示对话框可见,使其一进入页面就可看见提示框。为了ui界面的美观,先设置回答界面不可见。利用axios进行前后端数据的传输。先引入axios用于与后端的通信。先是显示问题的方法(以考公为例)发送输入的文字以及后端通信的方法。问题选择框逻辑(以考公为例)
2024-06-24 12:16:53 221
原创 项目实训日志(十一)-数据部分工作总结
最后一共得到了22个数据文件,简历中有6个,银行2个,企业管理3个,教资3个,公考3个,mbti2个。数据格式化: 将数据整理成模型微调所需的 JSON 格式,包括问题、答案、评分、评论等结构化信息,确保数据格式符合模型要求。数据集清洗与整理: 对搜集到的数据进行清洗和整理,去除噪声数据和重复数据。确保数据集的质量和多样性,保证模型训练的有效性。数据来源研究: 搜集计算机行业领域的面试问题、回答、以及相关资料。主要通过爬取开源数据和手动收集面试相关问题的答案和解答技巧。
2024-06-24 11:18:46 423
原创 项目实训日志(十)-数据集清洗与整理
在上一步中,我爬取到了考公,教资,银行,企业管理这四个行业的一些面试问题,但是在这些数据中存在一些噪声数据,今天我主要完成数据清洗的工作。
2024-06-20 13:28:11 148
原创 项目实训日志(九)-数据集爬取
我接下来主要负责我们项目的数据集的收集与清洗,数据来源研究: 搜集计算机、考公,教资,银行,企业管理行业领域的面试问题、回答、以及相关资料。主要通过爬取开源数据和手动收集面试相关问题的答案和解答技巧。在之前我搜集了计算机领域的数据集,接下来将在考公,教资,银行,企业管理四个行业和领域爬取相关数据。
2024-06-17 23:53:31 656
原创 项目实训日志(八)-lora参数调研与处理
我们使用了lora方法进行微调,这是一些参数,本篇文章主要探讨参数的含义和设置。1. **学习率 (Learning Rate)**:这是优化算法中调整模型参数的速率。学习率越高,参数更新的步长越大,但可能会导致训练不稳定或错过最优解。我们选择这个学习率是因为它在实验中被证明能够有效地平衡收敛速度和训练稳定性。较低的学习率有助于模型在训练过程中更细致地探索参数空间,从而找到更好的局部最优解。2. **训练轮数 (Epochs)**:这是指整个训练数据集被完整地通过模型一次的次数。
2024-05-31 10:52:08 1410
原创 项目实训日志(七)-数据集查找与数据预处理
数据预处理的重要性在于,原始数据往往存在各种问题,例如缺失值、异常值、重复值等,这些问题会影响到后续的分析和建模。需要注意的是,不同的处理方法对数据的影响不同,选择合适的方法需要根据具体情况进行评估。同时,需要注意处理缺失值可能会对数据分布产生影响,因此需要对数据进行分析和建模之前进行充分的预处理。需要注意的是,不同的处理方法对数据的影响不同,选择合适的方法需要根据具体情况进行评估。填充缺失值:另一种方法是填充缺失值。数值的归一,丢失数据的分布信息,对数据之间的距离没有得到较好的保留,但保留了权重。
2024-05-31 10:30:28 476
原创 项目实训日志(六)-【lora】微调方法-2
LoRA原理很简单, 代码实现也不复杂。简单地说,在模型实现上, 要在特定的模块上加一个旁路, 这个旁路就是两个矩阵相乘的形式。这些特定的模块理论上可以是任何模块, 目前作者实现的是在Linear, Embeding, Conv, Attention(只改其中的q和v)这些模块上加。实际使用LoRA微调时, 也不用自己向上面那样实现了。上面的loralib库已经实现好了, 直接使用就好了。具体而言, 就是把网络中原来使用。替换就可以了, 其他的模块同理。用loralib库中的。
2024-05-30 08:44:42 222
原创 项目实训日志(五)-【lora】大模型微调方法-1
LoRA在模型中增加了一个辅助的路径,这个路径由两个小矩阵A和B组成,它们相乘的结果可以近似原来大矩阵的功能。这里的A和B的尺寸远小于原来的大矩阵,因此需要调整的参数数量大大减少。使用LoRA进行训练时,如果使用Adam这样的优化器,所需的显存大约只有全面微调所需显存的三分之一,这样就能以更低的成本来训练模型。
2024-05-30 08:42:00 417
原创 项目实训日志(四)-【ChatGLM3-6B】本地大模型使用方法
其最终的宏观效果是,在较低的温度下,我们的模型更具确定性,而在较高的温度下,则不那么确定。上述结构中,、和表示对话头;:系统信息,设计上可穿插于对话中,但目前规定仅可以出现在开头。ChatGLM3的对话格式由若干条对话组成,其中每条对话包含对话头和内容。在出现之前必须有一个来自 的信息。不会连续出现多个来自 的信息。必须在 的信息之后。:用户。
2024-05-10 00:40:59 230
原创 项目实训日志(三)-ChatGLM3-6B 本地部署与调用
首先,无论是 Windows 还是 Linux 系统,确保系统中已经配置好 CUDA 相关环境。从国内的 ModelScope 中下载 ChatGLM3-6B。ChatGLM3-6B 是一个清华开源双语对话语言模型,这里记录一下该模型在本地电脑上部署的过程和参考官方示例代码实现基本的对话功能调用。
2024-05-10 00:33:17 263
原创 项目实训日志(一)-确定项目主题
我们主要讨论了项目主题,最终确定要做一个简历生成系统,这里的简历包含多种不同类型的、不同风格的简历,例如工作简历、婚恋简历等。项目主要通过大模型接口实现在输入几个关键词时输出成段的文字,图形化界面通过制作一个网页来实现。除此之外,我们还提供了根据生日等信息的性格分析和就业推荐功能。
2024-03-26 14:19:38 427
原创 山东大学游戏策划期末试题2023
游戏的定义,游戏和与其他类型的娱乐方式的不同。实物原型和数字原型的作用(10分)游戏策划2023考试题(回忆版)创新型的体育竞技类游戏(15分)简答(一共十道题,5*10分)名词解释(3*5分)头脑风暴的步骤和方法。
2023-06-08 08:24:23 140 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人