目录
* 性质2:(保号性):极限正,则去心邻域正,极限负则去心邻域负
* 例子1:利用保号性判断是否为极小值----及其频繁的使用
例子2: 夹逼定理具体应用,注意的是此题中的x需要看作常数。
(一)一般性质:
性质1:(唯一性)极限存在唯一
* 性质2:(保号性):极限正,则去心邻域正,极限负则去心邻域负
但是不讨论零的,因为0是没有正负的。或者说0的左右就是正负
* 例子1:利用保号性判断是否为极小值----及其频繁的使用
还有两个性质基础阶段不经常用,在提高阶段经常用,所以基础阶段不需要去讲。
*(二)存在性质:----核心中的核心
主要作用判断极限是否存在。
准则一:夹逼定理(迫敛定理)
例子1:利用夹逼定则求极限
关于夹逼定则例子1的注解:
例子2: 夹逼定理具体应用,注意的是此题中的x需要看作常数。
准则二:单调有界的数列必有极限
1.有界
1.1上界
1.2下界
有上下界和有界之间的关系:
单调递增的数列的两种情形:
单调递增的数列天然有下界,因为数列是由首项的,又是单调递增的。所以天然有下界。那么就不需要对下界分类讨论了,只需要对上界的不确定性分类讨论
单调递减的数列的两种情形:
与单调递增同理。
(三)无穷小的性质:
1.一般性质:
α是无穷小,β也是无穷小的情况:
α是有界函数,β是无穷小的情况:
例子1:有界函数乘以无穷小的情况:
* 无穷小一般性质的第三点:
2.等价性质(两点)
无穷小等价之间是可以传递的。