高等数学笔记:极限的性质总结

繁星数学随想录·笔记卷

摘录卷

极限的性质总结

一、数列极限的性质

01 唯一性
  • lim ⁡ n → ∞ x n = A , lim ⁡ n → ∞ x n = B ⇒ A = B \lim \limits_{n \rightarrow \infty} x_{n}=A, \quad \lim \limits_{n \rightarrow \infty} x_{n}=B \Rightarrow A=B nlimxn=A,nlimxn=BA=B
02 有界性
  • lim ⁡ n → ∞ x n = A ⇒ ∃ M > 0 : ∣ x n ∣ < M ( ∀ n ∈ N + ) \lim \limits_{n \rightarrow \infty} x_{n}=A \Rightarrow \exists M>0:\left|x_{n}\right|<M \quad\left(\forall n \in \mathbf{N}_{+}\right) nlimxn=AM>0:xn<M(nN+)
03 保号性
  • 表述01
    • lim ⁡ n → ∞ x n = A > 0 ⇒ ∃ N ∈ N + : ∀ n > N , x n > A 2 \lim \limits_{n \rightarrow \infty} x_{n}=A>0 \Rightarrow \exists N \in \mathbf{N}_{+}: \forall n>N, x_{n}>\frac{A}{2} nlimxn=A>0NN+:n>N,xn>2A
  • 表述02(同济版)
    • lim ⁡ n → ∞ x n = A > 0 \lim \limits_{n \rightarrow \infty} x_{n}=A>0 nlimxn=A>0​ ,那么 ∃ N ∈ N + , ∀ n > N , \exists N \in N^{+},\forall n > N, NN+,n>N, x n > 0 x_{n}>0 xn>0
    • lim ⁡ n → ∞ x n = A < 0 \lim \limits_{n \rightarrow \infty} x_{n}=A<0 nlimxn=A<0​ ,那么 ∃ N ∈ N + , ∀ n > N , \exists N \in N^{+},\forall n > N, NN+,n>N, x n < 0 x_{n}<0 xn<0
  • 表述03
    • lim ⁡ n → ∞ x n = A > 0 \lim \limits_{n \rightarrow \infty} x_{n}=A>0 nlimxn=A>0 ,那么 ∀ A ′ ∈ ( 0 , A ) , ∃ N ∈ N + , ∀ n > N , \forall A' \in (0,A) , \exists N \in N^{+},\forall n > N, A(0,A),NN+,n>N, x n > A ′ x_{n}>A' xn>A
    • lim ⁡ n → ∞ x n = A < 0 \lim \limits_{n \rightarrow \infty} x_{n}=A<0 nlimxn=A<0​ ,那么 ∀ A ′ ∈ ( A , 0 ) , ∃ N ∈ N + , ∀ n > N , \forall A' \in (A,0) , \exists N \in N^{+},\forall n > N, A(A,0),NN+,n>N,​ 有 x n < A ′ x_{n}<A' xn<A
  • 保号性结论本身不涉及等于0的情况
    • 保的既然是”号“,那么就与 0 无关了
    • 考虑两个数列: − 1 n -\frac1n n1 1 n \frac1n n1,两数列极限均为0,但一个恒正,一个恒负​
  • 保号性的推论
    • 对表述02-②取逆否命题
    •  若对于  { x n } , ∃ N ∈ N + : 当  n > N  时,  x n ≥ 0 , 且  lim ⁡ n → ∞ x n = A ⇒ A ≥ 0 \text { 若对于 }\left\{x_{n}\right\}, \quad \exists N \in \mathbf{N}_{+}: \text {当 } n>N \text { 时, } x_{n} \geq 0 \text {, 且 }\lim \limits_{n \rightarrow \infty} x_{n}=A \Rightarrow A \geq 0  若对于 {xn},NN+: n>N xn0 nlimxn=AA0​​
    • 问题 条件中 x n ≥ 0 x_{n} \geq 0 xn0 改为 x > 0 x>0 x>0, 结论能否 A > 0 A>0 A>0 ?
      • 改为 x n > 0 x_{n}>0 xn>0,结论并不是 A > 0 A>0 A>0
04 保序性
  • lim ⁡ n → ∞ x n = A \lim \limits_{n\rightarrow \infty} x_{n}=A nlimxn=A​​​​ 与 lim ⁡ n → ∞ y n = B \lim \limits_{n\rightarrow \infty} y_{n}=B nlimyn=B​​​​,且 A > B A>B A>B​​​​​ ,则 ∃ N ∈ N + , ∀ n > N , \exists N \in N_{+},\forall n > N, NN+,n>N,​​​ 有 x n > y n x_{n}>y_{n} xn>yn​​​
  • 极限的大小顺序保证了函数的大小顺序
  • 极限大的,数列有无穷项更大
  • 保序性结论本身也不涉及相等的情况
    • 保的既然是”序“,那么相等就没有次序可言了
    • 考虑两个数列: − 1 n -\frac1n n1 1 n \frac1n n1​,两数列极限均为0,但一个恒正,一个恒负
  • 保序性的推论
    • y n = 0 y_{n}=0 yn=0
    • lim ⁡ n → ∞ x n = A > 0 \lim \limits_{n\rightarrow \infty} x_{n}=A>0 nlimxn=A>0​ ,则 ∃ N ∈ N + , ∀ n > N , \exists N \in N_{+},\forall n > N, NN+,n>N,​ 有 x n > 0 x_{n}>0 xn>0​​​ ① ,同样地,​
    • lim ⁡ n → ∞ x n = A < 0 \lim \limits_{n\rightarrow \infty} x_{n}=A<0 nlimxn=A<0​​ ,则 ∃ N ∈ N + , ∀ n > N , \exists N \in N_{+},\forall n > N, NN+,n>N,​​ 有 x n < 0 x_{n}<0 xn<0 ②​​​
    • 对②取逆否命题
      •  若对于  { x n } , ∃ N ∈ N + : 当  n > N  时,  x n ≥ 0 , 且  lim ⁡ n → ∞ x n = A ⇒ A ≥ 0 \text { 若对于 }\left\{x_{n}\right\}, \quad \exists N \in \mathbf{N}_{+}: \text {当 } n>N \text { 时, } x_{n} \geq 0 \text {, 且 }\lim \limits_{n \rightarrow \infty} x_{n}=A \Rightarrow A \geq 0  若对于 {xn},NN+: n>N xn0 nlimxn=AA0
      • 此即保号性的推论,殊途同归
05 保不等式性
  • x n ≥ y n , lim ⁡ n → ∞ x n = A , lim ⁡ n → ∞ y n = B ⇒ A ≥ B x_{n} \geq y_{n}, \lim \limits_{n \rightarrow \infty} x_{n}=A, \lim \limits_{n \rightarrow \infty} y_{n}=B \Rightarrow A \geq B xnyn,nlimxn=A,nlimyn=BAB
  • 函数的不等式保证了极限的不等式
  • 原来大的,极限也大
  • 保不等式性结论本身允许相等的情况
    • 保的既然是”不等式“,那么相等和不相等都应该包含
06 归并性
  • 子列
    • 数列 { x n } \left\{x_{n}\right\} {xn} 中的无穷项, 它们下标依次为 n 1 < n 2 < ⋯ < n k < ⋯ n_{1}<n_{2}<\cdots<n_{k}<\cdots n1<n2<<nk< ,则称数列 x n 1 , x n 2 , ⋯   , x n k , ⋯ x_{n_{1}}, x_{n_{2}}, \cdots, x_{n_{k}}, \cdots xn1,xn2,,xnk, { x n } \left\{x_{n}\right\} {xn} 的子列, 记为 { x n k } \left\{x_{n_{k}}\right\} {xnk}
  • lim ⁡ n → ∞ x n = A ⇔ ∀ { x n k } ⊂ { x n } : lim ⁡ k → ∞ x n k = A \lim \limits_{n \rightarrow \infty} x_{n}=A \Leftrightarrow \forall\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}: \lim \limits_{k \rightarrow \infty} x_{n_{k}}=A nlimxn=A{xnk}{xn}:klimxnk=A
  • 命题常应用于说明极限不存在
    • 例如: x n = ( − 1 ) n x_{n}=(-1)^{n} xn=(1)n
07 合并性
  • 我自己起的名字:奇偶子列极限同为A <=> 数列极限为A
  • lim ⁡ k → ∞ x 2 k − 1 = A \lim \limits_{k \rightarrow \infty} x_{2 k-1}=A klimx2k1=A lim ⁡ k → ∞ x 2 k = A ⇔ lim ⁡ n → ∞ x n = A \lim \limits_{k \rightarrow \infty} x_{2 k}=A \Leftrightarrow \lim \limits_{n \rightarrow \infty} x_{n}=A klimx2k=Anlimxn=A

二、函数极限的性质

(1) 唯一性
  • lim ⁡ x → a f ( x ) = A , lim ⁡ x → a f ( x ) = B , ⇒ A = B \lim \limits_{x \rightarrow a} f(x)=A, \lim \limits_{x \rightarrow a} f(x)=B, \Rightarrow A=B xalimf(x)=A,xalimf(x)=B,A=B
(2) 局部有界性
  • lim ⁡ x → a f ( x ) = A ⇒ ∃ δ > 0 , M > 0 : ∣ f ( x ) ∣ ≤ M , ( x ∈ U ∘ ( a , δ ) ) \lim \limits_{x \rightarrow a} f(x)=A \Rightarrow \exists \delta>0, M>0:|f(x)| \leq M,(x \in \stackrel{\circ}{U}(a, \delta)) xalimf(x)=Aδ>0,M>0:f(x)M,(xU(a,δ))
(3) 局部保号性
  • 表述01
    • lim ⁡ x → a f ( x ) = A > 0 ⇒ ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , f ( x ) > A 2 ( > 0 ) \lim \limits_{x \rightarrow a} f(x)=A>0 \Rightarrow \exists \delta>0,\forall x \in \stackrel{\circ}{U}(a, \delta), f(x)>\frac{A}{2}(>0) xalimf(x)=A>0δ>0,xU(a,δ),f(x)>2A(>0)
  • 表述02
    • 由表述01重写得
    • lim ⁡ x → a f ( x ) = A > 0 ⇒ ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , f ( x ) > 0 \lim \limits_{x \rightarrow a} f(x)=A>0 \Rightarrow \exists \delta>0,\forall x \in \stackrel{\circ}{U}(a, \delta), f(x)>0 xalimf(x)=A>0δ>0,xU(a,δ),f(x)>0​​
    • lim ⁡ x → a f ( x ) = A < 0 ⇒ ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , f ( x ) < 0 \lim \limits_{x \rightarrow a} f(x)=A<0 \Rightarrow \exists \delta>0,\forall x \in \stackrel{\circ}{U}(a, \delta), f(x)<0 xalimf(x)=A<0δ>0,xU(a,δ),f(x)<0
  • 表述03
    • lim ⁡ x → a f ( x ) = A > 0 \lim \limits_{x \rightarrow a} f(x)=A>0 xalimf(x)=A>0 ,那么 ∀ A ′ ∈ ( 0 , A ) , ∀ x ∈ U ∘ ( a , δ ) , \forall A' \in (0,A) , \forall x \in \stackrel{\circ}{U}(a, \delta), A(0,A),xU(a,δ), f ( x ) > A ′ f(x)>A' f(x)>A
    • lim ⁡ x → a f ( x ) = A < 0 \lim \limits_{x \rightarrow a} f(x)=A<0 xalimf(x)=A<0 ,那么 ∀ A ′ ∈ ( A , 0 ) , ∀ x ∈ U ∘ ( a , δ ) , \forall A' \in (A,0) , \forall x \in \stackrel{\circ}{U}(a, \delta), A(A,0),xU(a,δ), f ( x ) < A ′ f(x)<A' f(x)<A
  • 局部保号性的推论
    • 由表述02-②取逆否命题有
    • ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ), f ( x ) ≥ 0 f(x)\geq0 f(x)0,那么 lim ⁡ x → a f ( x ) = A ≥ 0 \lim \limits_{x \rightarrow a} f(x)=A\geq0 xalimf(x)=A0
(4) 局部保序性
  • lim ⁡ x → a f ( x ) = A , lim ⁡ x → a g ( x ) = B , A > B \lim \limits_{x \rightarrow a} f(x)=A,\lim \limits_{x \rightarrow a} g(x)=B,A>B xalimf(x)=Axalimg(x)=BA>B​ ,那么 ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​ 有 f ( x ) > g ( x ) f(x)>g(x) f(x)>g(x)
  • 局部保序性的特殊情况
    • g ( x ) = 0 g(x)=0 g(x)=0​​​ 时,有以下结论:
      • lim ⁡ x → a f ( x ) = A > 0 \lim \limits_{x \rightarrow a} f(x)=A>0 xalimf(x)=A>0​​​ ,那么 ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​​​ 有 f ( x ) > 0 f(x)>0 f(x)>0
      • lim ⁡ x → a f ( x ) = A < 0 \lim \limits_{x \rightarrow a} f(x)=A<0 xalimf(x)=A<0​​​ ,那么 ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​​​ 有 f ( x ) < 0 f(x)<0 f(x)<0
    • 将该结论②取逆否命题,有:
      • ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​​​​ 有 f ( x ) ≥ 0 f(x)\geq0 f(x)0​​​​,那么 lim ⁡ x → a f ( x ) = A ≥ 0 \lim \limits_{x \rightarrow a} f(x)=A\geq0 xalimf(x)=A0​​​​
      • 此即局部保号性的推论,殊途同归
(5) 局部保不等式性
  • ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , lim ⁡ x → a f ( x ) = A , lim ⁡ x → a g ( x ) = B , f ( x ) > g ( x ) \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta),\lim \limits_{x \rightarrow a} f(x)=A,\lim \limits_{x\rightarrow a} g(x)=B,f(x)>g(x) δ>0,xU(a,δ),xalimf(x)=Axalimg(x)=Bf(x)>g(x) ,那么有 A > B A>B A>B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值