极限的定义及其性质

极限及其性质

数列极限

Def 1. 数列极限的定义

给定数列 a n a_n an。如果存在唯一实数A,对于 ∀ ϵ > 0 , ∃ N , \forall\epsilon>0,\exist N, ϵ>0,N,使得当 n > N n>N n>N时,总有 ∣ a n − A ∣ < ϵ |a_n-A|<\epsilon anA<ϵ,我们称数列 a n a_n an以实数A为极限。记作
lim ⁡ n → ∞ a n = A \lim\limits_{n\rightarrow\infty}a_n=A nliman=A

Notes:

  1. 利用 ϵ \epsilon ϵ的任意性可以进行许多的证明。

  2. a n a_n an是可以与A相等的。

数列极限的性质

Th. 1 数列极限的唯一性

设数列 a n a_n an存在极限A与B。那么就有:

对于 ∀ ϵ , ∃ N 1 , N 2 \forall\epsilon,\exist N_1,N_2 ϵ,N1,N2,使得当 n 1 > N 1 , n 2 > N 2 n_1>N_1,n_2>N_2 n1>N1,n2>N2时,有
∣ a n 1 − A ∣ < ϵ ∣ a n 2 − B ∣ < ϵ |a_{n_1}-A|<\epsilon\\ |a_{n_2}-B|<\epsilon an1A<ϵan2B<ϵ
不妨取 δ = m a x ( N 1 , N 2 ) \delta=max(N_1,N_2) δ=max(N1,N2),那么有,当 n > δ n>\delta n>δ后有
∣ a n − A ∣ < ϵ ∣ a n − B ∣ < ϵ |a_{n}-A|<\epsilon\\ |a_n-B|<\epsilon anA<ϵanB<ϵ
于是有
∣ A − B ∣ ≤ ∣ a n − A ∣ + ∣ a n − B ∣ < 2 ϵ |A-B|\le|a_n-A|+|a_n-B|<2\epsilon ABanA+anB<2ϵ
由于 ϵ \epsilon ϵ的任意性,得到 A = B A=B A=B.

Th. 2 数列与子列极限的关系

Def 2. 子列的定义

x n x_n xn是一个数列,取 n 1 < n 2 < n 3 . . . n_1<n_2<n_3... n1<n2<n3...,则称 x n k x_{n_k} xnk x n x_n xn的一个子列。

lim ⁡ n → ∞ a n = A \lim\limits_{n\rightarrow\infty}a_n=A nliman=A,则 a n a_n an的任意子列 a n k a_{n_k} ank都有 lim ⁡ n → ∞ a n k = A \lim\limits_{n\rightarrow\infty}a_{n_k}=A nlimank=A

由极限的定义,则对于 ∀ ϵ , ∃ N , \forall\epsilon,\exist N, ϵ,N,使得当 n > N n>N n>N时,总有 ∣ a n − A ∣ < ϵ |a_n-A|<\epsilon anA<ϵ

K = N K=N K=N,那么当 x i > K x_i>K xi>K时,一定有 ∣ a x i − A ∣ < ϵ |a_{x_i} - A| < \epsilon axiA<ϵ

Th. 3 收敛数列必有界

Def 3. 数列有界的定义

若存在实数 M M M,对于任意的 n ∈ N n\in\N nN,都有 x n < = M x_n<=M xn<=M,我们称数列 x n x_n xn有上界。

同样地我们可以定义下界。

数列有界的充要条件是数列存在上下界。

若数列 a n a_n an收敛,则 a n a_n an必有界。

lim ⁡ n → ∞ a n = A \lim\limits_{n\rightarrow\infty}a_n=A nliman=A,那么取 ϵ = 1 \epsilon=1 ϵ=1,存在 N N N使得 n > N n>N n>N时一定有 ∣ a n − A ∣ < 1 |a_n-A|<1 anA<1

这时得到 ∣ a n ∣ ≤ ∣ a n − A ∣ + ∣ A ∣ < 1 + ∣ A ∣ |a_n|\le|a_n-A|+|A|<1+|A| ananA+A<1+A。这样,大于 N N N的部分是有界的。

下面,讨论小于等于 N N N的部分。很明显,取 M = m a x ( ∣ a 1 ∣ , ∣ a 2 ∣ , . . . , ∣ a n ∣ ) M=max(|a_1|,|a_2|,...,|a_n|) M=max(a1,a2,...,an),那么对于最终的结果,我们有

∀ n , ∣ a n ∣ ≤ m a x ( M , 1 + ∣ A ∣ ) \forall n, |a_n|\le max(M, 1 + |A|) n,anmax(M,1+A)。得证。

Th. 4 收敛数列的保号性

lim ⁡ n → ∞ a n = A > 0 \lim\limits_{n\rightarrow\infty}a_n=A>0 nliman=A>0,则对于任意的 k ∈ ( 0 , 1 ) k\in(0,1) k(0,1),存在自然数 N N N,当 n > N n>N n>N时有 x n > k A > 0 x_n>kA>0 xn>kA>0

lim ⁡ n → ∞ a n = A > 0 \lim\limits_{n\rightarrow\infty}a_n=A>0 nliman=A>0,取 ϵ = ( 1 − k ) A > 0 \epsilon=(1-k)A>0 ϵ=(1k)A>0。那么,存在 N N N,当 n > N n>N n>N时有
∣ x n − A ∣ < ( 1 − k ) a |x_n-A|<(1-k)a xnA<(1k)a
即,
x n > a − ( 1 − k ) ∗ a = k ∗ a > 0 x_n>a-(1-k)*a=k*a>0 xn>a(1k)a=ka>0

推论

若存在 N N N,当 n > N n>N n>N x n ≤ 0 x_n\le0 xn0,且数列极限存在,那么 lim ⁡ n → ∞ a n = A ≤ 0 \lim\limits_{n\rightarrow\infty}a_n=A\le0 nliman=A0

此为保号性的逆否命题。

函数极限

Def 4. 无穷型极限的定义

与数列完全类似。这里只给出正无穷的定义。

lim ⁡ x → + ∞ f ( x ) = A ⇔ ∀ ϵ > 0 , ∃ x , w h e n   x > X , ∣ f ( x ) − A ∣ < ϵ \lim\limits_{x\rightarrow+\infty}f(x)=A\Leftrightarrow\forall\epsilon>0,\exist x, when \space x>X, |f(x)-A|<\epsilon x+limf(x)=Aϵ>0,x,when x>X,f(x)A<ϵ

Def 5. 某一点极限的定义

lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ϵ > 0 , ∃ δ , w h e n   0 < ∣ x − x 0 ∣ < δ , ∣ f ( x ) − A ∣ < ϵ \lim\limits_{x\rightarrow x_0}f(x)=A\Leftrightarrow\forall\epsilon>0,\exist \delta, when \space 0<|x-x_0|<\delta, |f(x)-A|<\epsilon xx0limf(x)=Aϵ>0,δ,when 0<xx0<δ,f(x)A<ϵ

Notes:

  1. 去心临域,即某一点的极限并不要求与这一点的函数值无限接近。

Th. 5 函数极限和数列极限的关系(海涅定理)

lim ⁡ x → x 0 f ( x ) = A ⇔ \lim\limits_{x\rightarrow x_0}f(x)=A\Leftrightarrow xx0limf(x)=A对于任何一个收敛于 x 0 x_0 x0的数列, lim ⁡ n → ∞ f ( x n ) = A \lim\limits_{n\rightarrow\infty}f(x_n)=A nlimf(xn)=A

函数极限的性质

与数列极限一直,不再赘述。

无穷小量

Def 6. 无穷小量

lim ⁡ x → ⊗ f ( x ) = 0 \lim\limits_{x\rightarrow\otimes}f(x)=0 xlimf(x)=0,称 f ( x ) f(x) f(x) x → ⊗ x\rightarrow \otimes x时为无穷小量。记作
f ( x ) = o ( 1 ) ( x → ⊗ ) f(x)=o(1) (x\rightarrow \otimes) f(x)=o(1)(x)

Th. 6 无穷小量的常数性质

lim ⁡ x → ⊗ f ( x ) = A ⇔ f ( x ) = A + o ( 1 ) ( x → ⊗ ) \lim\limits_{x\rightarrow\otimes}f(x)=A\Leftrightarrow f(x)=A+o(1)(x\rightarrow \otimes) xlimf(x)=Af(x)=A+o(1)(x)

引理: 极限的加法法则

f ( x ) f(x) f(x) g ( x ) g(x) g(x)的极限均存在,那么有 l i m ( f ( x ) + g ( x ) ) = l i m f ( x ) + l i m g ( x ) lim (f(x)+g(x))=limf(x)+limg(x) lim(f(x)+g(x))=limf(x)+limg(x)

证明从略。

设辅助函数 g ( x ) = f ( x ) + f ( x ) − A g(x) = f(x) + f(x) - A g(x)=f(x)+f(x)A

根据极限的加法法则,即得
lim ⁡ x → ⊗ g ( x ) = A + o ( 1 ) \lim\limits_{x\rightarrow\otimes}g(x)=A+o(1) xlimg(x)=A+o(1)
得证。

Th. 7 无穷小量的运算

(1) 有穷个无穷小量的和仍然是无穷小量。

(2) 有穷个无穷小量的即依然是无穷小量。

(3) 无穷小量乘以有界函数,结果仍是无穷小量。

lim ⁡ x → x 0 α ( x ) = lim ⁡ x → x 0 β ( x ) = 0 \lim\limits_{x\rightarrow x_0}\alpha(x)=\lim\limits_{x\rightarrow x_0}\beta(x)=0 xx0limα(x)=xx0limβ(x)=0

于是有, ∀ ϵ , ∃ δ 1 , δ 2 , w h e n   0 < ∣ x 1 − x 0 ∣ < δ 1   a n d   0 < ∣ x 2 − x 0 ∣ < δ 2 , w e   h a v e \forall\epsilon,\exist\delta_1,\delta_2, when \space 0<|x_1-x_0|<\delta_1\space and \space 0<|x_2-x_0|<\delta_2, we \space have ϵ,δ1,δ2,when 0<x1x0<δ1 and 0<x2x0<δ2,we have
∣ α ( x 1 ) ∣ < ϵ ∣ β ( x 2 ) ∣ < ϵ |\alpha(x_1)|<\epsilon\\ |\beta(x_2)|<\epsilon α(x1)<ϵβ(x2)<ϵ
不妨取 δ = m a x ( δ 1 , δ 2 ) \delta = max(\delta_1,\delta_2) δ=max(δ1,δ2),那么 w h e n   0 < ∣ x − x 0 ∣ < δ when \space 0 < |x - x_0| < \delta when 0<xx0<δ
∣ α ( x ) ∣ < ϵ ∣ β ( x ) ∣ < ϵ |\alpha(x)|<\epsilon\\|\beta(x)|<\epsilon α(x)<ϵβ(x)<ϵ

即得 ∣ α ( x ) + β ( x ) ∣ < 2 ϵ |\alpha(x)+\beta(x)|<2\epsilon α(x)+β(x)<2ϵ, ∣ α ( x ) β ( x ) ∣ < ϵ 2 |\alpha(x)\beta(x)|<\epsilon^2 α(x)β(x)<ϵ2。得证。

lim ⁡ x → x 0 α ( x ) = 0 \lim\limits_{x\rightarrow x_0}\alpha(x)=0 xx0limα(x)=0 ∣ f ( x ) ∣ ≤ M |f(x)|\le M f(x)M.

那么 ∀ ϵ , ∃ δ , w h e n   0 < ∣ x − x 0 ∣ < δ 1 , α ( x ) < ϵ M < ϵ \forall\epsilon,\exist\delta,when \space 0<|x-x_0|<\delta_1, \alpha(x)<\frac{\epsilon}{M}<\epsilon ϵ,δ,when 0<xx0<δ1,α(x)<Mϵ<ϵ.

这样对于 f ( x ) α ( x ) f(x)\alpha(x) f(x)α(x)的无穷小性即得。

Def 7. 无穷大量

若对任意的 M M M,存在 δ > 0 \delta > 0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ时,有 ∣ f ( x ) ∣ > M |f(x)| > M f(x)>M,就称 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0的过程中是无穷大量,记作
lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\rightarrow x_0}f(x)=\infty xx0limf(x)=
若在定义中去掉绝对值符号可以引出正无穷和负无穷的定义。

Th. 8 极限的运算法则

(1) lim ⁡ x → ⊗ f ( x ) + g ( x ) = lim ⁡ x → ⊗ f ( x ) + lim ⁡ x → ⊗ g ( x ) \lim\limits_{x\rightarrow\otimes}f(x)+g(x)=\lim\limits_{x\rightarrow\otimes}f(x)+\lim\limits_{x\rightarrow\otimes}g(x) xlimf(x)+g(x)=xlimf(x)+xlimg(x)

(2) lim ⁡ x → ⊗ f ( x ) × g ( x ) = lim ⁡ x → ⊗ f ( x ) × lim ⁡ x → ⊗ g ( x ) \lim\limits_{x\rightarrow\otimes}f(x)\times g(x)=\lim\limits_{x\rightarrow\otimes}f(x) \times \lim\limits_{x\rightarrow\otimes}g(x) xlimf(x)×g(x)=xlimf(x)×xlimg(x)

(3) lim ⁡ x → ⊗ f ( x ) g ( x ) = lim ⁡ x → ⊗ f ( x ) lim ⁡ x → ⊗ g ( x ) \lim\limits_{x\rightarrow\otimes} \frac{f(x)}{g(x)} = \frac{\lim\limits_{x\rightarrow\otimes}f(x)}{\lim\limits_{x\rightarrow\otimes}g(x)} xlimg(x)f(x)=xlimg(x)xlimf(x)

Proof:

(1) lim ⁡ x → ⊗ f ( x ) + lim ⁡ x → ⊗ g ( x ) = A + o ( 1 ) + B + o ( 1 ) = A + B + o ( 1 ) = lim ⁡ x → ⊗ f ( x ) + g ( x ) \lim\limits_{x\rightarrow\otimes}f(x)+\lim\limits_{x\rightarrow\otimes}g(x)=A+o(1)+B+o(1)=A+B+o(1)=\lim\limits_{x\rightarrow\otimes}f(x)+g(x) xlimf(x)+xlimg(x)=A+o(1)+B+o(1)=A+B+o(1)=xlimf(x)+g(x)

(2) lim ⁡ x → ⊗ f ( x ) × g ( x ) = ( A + o ( 1 ) ) × ( B + o ( 1 ) ) = A × B + o 2 ( 1 ) + ( A + B ) × o ( 1 ) = lim ⁡ x → ⊗ f ( x ) × lim ⁡ x → ⊗ g ( x ) \lim\limits_{x\rightarrow\otimes}f(x)\times g(x) = (A +o(1))\times (B+o(1)) = A\times B + o^2(1) + (A+B)\times o(1)=\lim\limits_{x\rightarrow\otimes}f(x)\times \lim\limits_{x\rightarrow\otimes}g(x) xlimf(x)×g(x)=(A+o(1))×(B+o(1))=A×B+o2(1)+(A+B)×o(1)=xlimf(x)×xlimg(x)

(3) lim ⁡ x → ⊗ f ( x ) g ( x ) − A + o ( 1 ) B + o ( 1 ) = B f ( x ) + o ( 1 ) f ( x ) − A g ( x ) − o ( 1 ) g ( x ) g ( x ) × ( B + o ( 1 ) ) = o ( 1 ) \lim\limits_{x\rightarrow\otimes} \frac{f(x)}{g(x)} - \frac{A+o(1)}{B+o(1)}=\frac{Bf(x)+o(1)f(x)-Ag(x)-o(1)g(x)}{g(x)\times(B+o(1))}=o(1) xlimg(x)f(x)B+o(1)A+o(1)=g(x)×(B+o(1))Bf(x)+o(1)f(x)Ag(x)o(1)g(x)=o(1)

推论1: 指数函数的极限法则

lim ⁡ x n = ( l i m   x ) n \lim x^n = (lim \space x)^n limxn=(lim x)n

Th. 9 极限的复合运算法则

如果有 lim ⁡ x → x 0 g ( x ) = u \lim\limits_{x\rightarrow x_0}g(x)=u xx0limg(x)=u, lim ⁡ u → u 0 f ( u ) = A \lim\limits_{u\rightarrow u_0}f(u)=A uu0limf(u)=A且存在一个 u 0 u_0 u0的去心临域使得函数值不等,那么有 lim ⁡ x → x 0 f ( g ( x ) ) = lim ⁡ u → u 0 f ( u ) = A \lim\limits_{x\rightarrow x_0}f(g(x))=\lim\limits_{u\rightarrow u_0}f(u)=A xx0limf(g(x))=uu0limf(u)=A

Proof:

Notes: 这个代换不允许常量的代换,一定以某个变量进行换元!去心临域不等的条件强于连续,连续的条件对于该定理也成立。实际上,连续的条件是这个定理的一个子集。

Th. 10 夹逼定理

以数列的夹逼定理为例证明,对于函数有相同的结果

设数列 a n , b n , c n a_n, b_n, c_n an,bn,cn.若从某一项开始,有 a n ≤ b n ≤ c n a_n\le b_n \le c_n anbncn,且 lim ⁡ x → ∞ a n = A , lim ⁡ x → ∞ c n = A \lim\limits_{x\rightarrow \infty}a_n = A, \lim\limits_{x\rightarrow \infty}c_n = A xliman=A,xlimcn=A,有 lim ⁡ x → ∞ b n = A . \lim\limits_{x\rightarrow \infty}b_n=A. xlimbn=A.

Proof:

∀ ϵ \forall \epsilon ϵ,对于 a n a_n an,存在 N 1 N_1 N1,使得 n > N 1 n>N_1 n>N1 ∣ a n − A ∣ < ϵ |a_n-A|<\epsilon anA<ϵ,对于 c n c_n cn,存在 N 2 N_2 N2,使得 n > N 2 n>N_2 n>N2 ∣ c n − A ∣ < ϵ |c_n-A|<\epsilon cnA<ϵ

不妨取 N = m a x ( N 1 , N 2 ) N=max(N_1,N_2) N=max(N1,N2),此时有
∣ a n − A ∣ < ϵ ,   ∣ c n − A ∣ < ϵ |a_n-A|<\epsilon, \space |c_n-A|<\epsilon anA<ϵ, cnA<ϵ
整理后有
A − ϵ < a n < A + ϵ A − ϵ < c n < A + ϵ A-\epsilon<a_n<A+\epsilon\\ A-\epsilon<c_n<A+\epsilon Aϵ<an<A+ϵAϵ<cn<A+ϵ
带入 b n b_n bn,得到
A − ϵ < a n ≤ b n ≤ c n < A + ϵ A-\epsilon<a_n\le b_n \le c_n < A+\epsilon Aϵ<anbncn<A+ϵ
即,
∣ b n − A ∣ < ϵ |b_n - A| < \epsilon bnA<ϵ
得证。

Th. 11 单调有界的数列必有极限

证明超出范围。

Def.8 无穷小量

lim ⁡ β α = 0 \lim\frac{\beta}{\alpha}=0 limαβ=0,称 β \beta β α \alpha α的无穷小量,记作 β = o ( α ) \beta=o(\alpha) β=o(α)

lim ⁡ β α = 1 \lim\frac{\beta}{\alpha}=1 limαβ=1,称二者之间为等价无穷小,记作 β \beta β ~ $ \alpha$

Th. 12 $\alpha $ ~ β ⇔ β = α + o ( α ) \beta \Leftrightarrow \beta = \alpha + o(\alpha) ββ=α+o(α)

证明略。

Th. 13 恒等代换

α = α ′ , β = β ′ , lim ⁡ α β = lim ⁡ α ′ β ′ \alpha = \alpha', \beta = \beta', \lim\frac{\alpha}{\beta} = \lim\frac{\alpha'}{\beta'} α=α,β=β,limβα=limβα

Proof:

lim ⁡ α β = lim ⁡ α β α ′ α β β ′ = lim ⁡ α α × lim ⁡ β β × lim ⁡ α ′ β ′ \lim\frac{\alpha}{\beta}=\lim\frac{\alpha}{\beta}\frac{\alpha'}{\alpha}\frac{\beta}{\beta'}=\lim\frac{\alpha}{\alpha}\times \lim\frac{\beta}{\beta} \times \lim\frac{\alpha'}{\beta'} limβα=limβαααββ=limαα×limββ×limβα

Def. 9 连续性

设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一临域内有定义, Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) - f(x_0) Δy=f(x0+Δx)f(x0)。若 lim ⁡ Δ x → ∞ Δ y = 0 \lim\limits_{\Delta x \rightarrow \infty}\Delta y = 0 ΔxlimΔy=0,称函数在这一点连续。

等价于, lim ⁡ x 0 → x f ( x ) = f ( x 0 ) \lim\limits_{x_0\rightarrow x}f(x)=f(x_0) x0xlimf(x)=f(x0)

Def. 10 间断点

1. 第一类间断点
可去间断点
跳跃间断点
2. 第二类间断点

Th. 14 连续函数四则运算结果仍然是连续函数

Th. 15 对于严格单调的函数且连续,其反函数也严格单调且连续。

Th. 9 Ex.

将该定理中的去心临域条件改为连续,可以得到更强的结论

如果有 lim ⁡ x → x 0 g ( x ) = u \lim\limits_{x\rightarrow x_0}g(x)=u xx0limg(x)=u, lim ⁡ u → u 0 f ( u ) = A \lim\limits_{u\rightarrow u_0}f(u)=A uu0limf(u)=A f ( x ) , g ( x ) f(x), g(x) f(x),g(x) u , x u, x u,x处均连续,那么有 lim ⁡ x → x 0 f ( g ( x ) ) = lim ⁡ u → u 0 f ( u ) = A \lim\limits_{x\rightarrow x_0}f(g(x))=\lim\limits_{u\rightarrow u_0}f(u)=A xx0limf(g(x))=uu0limf(u)=A。并且我们有, lim ⁡ x → x 0 f ( g ( x ) ) = f ( lim ⁡ x → x 0 g ( x ) ) \lim\limits_{x\rightarrow x_0}f(g(x))=f(\lim\limits_{x\rightarrow x_0}g(x)) xx0limf(g(x))=f(xx0limg(x))

Th. 16 复合函数连续性

f ( x ) , g ( x ) f(x), g(x) f(x),g(x) u , x 0 u, x_0 u,x0处均连续,那么有 f ( g ( x ) ) f(g(x)) f(g(x))也连续。

由Th. 9 Ex.

lim ⁡ x → x 0 f ( g ( x ) ) = f ( lim ⁡ x → x 0 g ( x ) ) = f ( g ( x 0 ) ) \lim\limits_{x\rightarrow x_0}f(g(x))=f(\lim\limits_{x\rightarrow x_0}g(x))=f(g(x_0)) xx0limf(g(x))=f(xx0limg(x))=f(g(x0))

由此得到了,所有初等函数在其定义域上全部连续。

Th. 17 引理:最大值最小值引理

闭区间上的连续函数必能取到最大值和最小值。

Notes: 开区间上不一定能取到。

Th. 18 引理: 零点定理

f ( x ) ∈ C [ a , b ] , i f   f ( a ) f ( b ) < 0 ,   t h e n   ∃   ξ ∈ ( a , b ) , f ( ξ ) = 0. f(x)\in C[a, b], if ~ f(a)f(b) < 0, ~ then ~ \exist ~ \xi \in (a, b), f(\xi) = 0. f(x)C[a,b],if f(a)f(b)<0, then  ξ(a,b),f(ξ)=0.

Th. 19 介值定理

f ( x ) ∈ C [ a , b ] , f ( a ) = A , f ( b ) = B , f o r   e a c h   p o s s i b l e   ξ   i n   ( A , B ) , ∃   c ∈ ( a , b ) ,   t h a t   f ( c ) = ξ . f(x) \in C[a,b], f(a) = A, f(b) = B, for ~ each ~ possible ~ \xi ~in ~(A, B), \exist ~ c \in (a, b), ~that~f(c)=\xi. f(x)C[a,b],f(a)=A,f(b)=B,for each possible ξ in (A,B), c(a,b), that f(c)=ξ.

Proof: 考察任意值 C C C.

设辅助函数 ϕ ( x ) = f ( x ) − C \phi(x) = f(x) - C ϕ(x)=f(x)C,易得 ϕ ( a ) , ϕ ( b ) \phi(a), \phi(b) ϕ(a),ϕ(b)异号。由零点定理,必有 ξ , ϕ ( ξ ) = 0 \xi, \phi(\xi)=0 ξ,ϕ(ξ)=0

即, f ( ξ ) = C . f(\xi)=C. f(ξ)=C.

推论:闭区间上的函数必能取到最大值和最小值之间的任何值。

由最大值最小值引理,可以找到最大值和最小值的下标,在这个区间上应用介值定理即可。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值